Math, asked by jiya12314, 1 month ago

please do solve this maths question as soon as possible with full explanation​

Attachments:

Answers

Answered by hindustanipoet
0

Answer:

The correct answer is option D

Step-by-step explanation:

((27)^1/6 - (27/4)^1/2)^2

((3)^1/2 - (3)(3)^1/2)^2

Since,

(a - b)^2 = a^2 - 2ab + b^2

((3)^1/2)^2 - 2((3)^1/2)((3)^1/2)(3)/2 + (((3)(3)^1/2)/2)^2

3 - 9 + 27/4

(12 - 36 + 27)/4

3/4

Answered by abhinavmike85
33

Answer:

( {(27)}^{ \frac{1}{6} }  - {( \frac{27}{4}) }^{ \frac{1}{2} } )^{2}

Using (a-b)^2 = a^2+b^2-2ab

 \\ ((27)^{ \frac{1}{6} } )^{2}  +  {(( \frac{27}{4} )^{ \frac{1}{2} } )}^{2}  - 2 \times  {(27)}^{ \frac{1}{6} }  \times  { (\frac{27}{4}) }^{ \frac{1}{2} }  \\  \\  { (27) }^{ \frac{1}{3} }  +  \frac{27}{4}  - 2 \times  {(27)}^{ \frac{1}{6} }  \times  {(27)}^{ \frac{1}{2} }  \times  {(4)}^{ \frac{ - 1}{2} }  \\  \\ 3 +  \frac{27}{4}  - 2 \times  {( {(2)}^{2} )}^{ \frac{ - 1}{2} }  \times  {(27)}^{ \frac{1}{6}  +  \frac{1}{2} }  \\  \\ 3 +  \frac{27}{4}  -  {2}^{1}  \times  {2}^{ - 1}  \times  {(27)}^{ \frac{1 + 3}{6} }  \\  \\ 3 +  \frac{27}{4}  -  {2}^{(1 - 1)}  \times  {(27)}^{ \frac{4}{6} }  \\  \\ 3 +  \frac{27}{4}  -  {2}^{0}  \times  {(27)}^{ \frac{2}{3} }  \\  \\ 3 +  \frac{27}{4}  - 1 \times  {( {(27)}^{ \frac{1}{3} }) }^{2}  \\  \\ 3 +  \frac{27}{4}  -  {3}^{2}  \\  \\ 3 +  \frac{27}{4}  - 9 \\  \\  \frac{12 + 27 - 36}{4}  \\  \\  \frac{3}{4}

Hope it helps

Similar questions