Math, asked by vinay2461, 4 days ago

please do this and get 10 points

Attachments:

Answers

Answered by MysticSohamS
1

Answer:

your solution is as follows

pls mark it as brainliest

Step-by-step explanation:

to \: prove :  \\ 2sec {}^{2}   x - sec {}^{4} x - 2.cosec {}^{2} x + cosec {}^{4}  x  = \\  \frac{1 - tan {}^{8}  \: x}{tan {}^{4} \: x }  \\  \\ LHS = 2sec {}^{2}   x - sec {}^{4} x -   2cosec {}^{2} x + cosec {}^{4} x \\ \\   = 2(1 + tan {}^{2} x) - (1 + tan {}^{2} x) {}^{2}  -  \\ 2(1 + cot {}^{2} x) + (1 + cot {}^{2} x) {}^{2}  \\  \\  = 2 + 2tan {}^{2} x - 1 - tan {}^{4} x - 2tan {}^{2} x \\  - 2 - 2cot {}^{2} x + 1 + cot {}^{4} x + 2cot {}^{2} x \\  \\  = cot {}^{4} x - tan {}^{4} x \\  \\  =  \frac{1}{tan {}^{4} x}  - tan { }^{4} x \\  \\  =  \frac{1 - tan {}^{8}x }{tan {}^{4}x }  \\  \\  = RHS

Similar questions