Math, asked by athishvaishu123, 2 months ago

please do this and send
please gu​

Attachments:

Answers

Answered by parthkaushik792001
0

Answer:

give me brillant.. nhi aaja to doobara bta dunga. okkkk

Step-by-step explanation:

hope u understand this sol

Attachments:
Answered by sharanyalanka7
9

Answer:

1)  Order of 'C' = 1 × 2

2)Matrix\:'C'=\begin{bmatrix}-2& -1\end{bmatrix}

Step-by-step explanation:

Given ,

A=\begin{bmatrix}2 & -1 \\-4 & 5 \end{bmatrix}

B=\begin{bmatrix}0& -3\end{bmatrix}

CA = B

To Find :-

1) order of 'C'

2) matrix of 'C'

Solution :-

CA = B

C\times \begin{bmatrix}2&-1\\ -4&5\end{bmatrix}=\begin{bmatrix}0&-3\end{bmatrix}

C=\begin{bmatrix}0&-3\end{bmatrix}\times \begin{bmatrix}2&-1\\-4&5\end{bmatrix}^{-1}

AdjA=\begin{bmatrix}5& 1\\4& 2\end{bmatrix}

\left[\therefore If \:'A'\begin{bmatrix}a & b \\c & d \end{bmatrix}, Adj'A'=\begin{bmatrix}d & -b \\-c & a \end{bmatrix} \right]

det A = (5 × 2) - (1 × 4)

= 10 - 4

= 6

∴ detA = 6

\displaystyle \sf{ \implies \: C =\begin{bmatrix} 0 & - 3 \end{bmatrix} \times \frac{1}{6} \begin{bmatrix} 5 & 1\\ 4 & 2 \end{bmatrix} }

[ ∴ A⁻¹ = Adj A/det A ]

\displaystyle \sf{ \implies \: C = \frac{1}{6} \times \begin{bmatrix} 0 & - 3 \end{bmatrix} \begin{bmatrix} 5 & 1\\ 4 & 2 \end{bmatrix} }

Multiplying 1st row in 'B' with 1st column in 'A' :-

= (0 × 5) + (-3 × 4)

= 0 - 12

= - 12

[ ∴ '-12' will be in the first row first column in matrix 'C' ]

Multiplying 1st row in 'B' with 2nd column in 'A' :-

= (0 × 1) + ((-3) × 2)

= 0 - 6

= -6

[ ∴ '-6' will be in the 1st row , 2nd column in matrix 'C' ]

\implies C=\dfrac{1}{6}\times \begin{bmatrix}-12& -6\end{bmatrix}

C=\begin{bmatrix}\dfrac{-12}{6}&\dfrac{-6}{6}\end{bmatrix}

C=\begin{bmatrix}-2&-1\end{bmatrix}

Order of 'C' = Number of columns × Number of rows in 'C'

= 1 × 2

∴ Order of 'C' = 1 × 2

Matrix\:'C'=\begin{bmatrix}-2& -1\end{bmatrix}

Similar questions