Math, asked by skpsai, 5 months ago

please do this fast! I will ignore bustard answers##​

Attachments:

Answers

Answered by senboni123456
2

Step-by-step explanation:

We have,

 \cos( \frac{2\pi}{15} )  \cos( \frac{4\pi}{15} )  \cos( \frac{8\pi}{15} )  \cos( \frac{16\pi}{15} )

 \cos( \frac{2\pi}{15} )  \cos(2. \frac{2\pi}{15} )  \cos( {2}^{2} . \frac{2\pi}{15} )  \cos(  {2}^{3} .\frac{2\pi}{15} )

Now,

We know that

 \cos( \alpha )  \cos(2 \alpha ) \cos( {2}^{2}  \alpha )   \cos( {2}^{3}  \alpha ) .... \cos( {2}^{n - 1}  \alpha )  =  \frac{ \sin( {2}^{n}  \alpha ) }{ {2}^{n}  \sin( \alpha ) }  \\

Using this, we have,

 =  \frac{ \sin( \frac{32\pi}{15} ) }{16 \sin( \frac{2\pi}{15} ) }  \\

 =  \frac{1}{16}

 =  \frac{ \sin(2\pi +  \frac{2\pi}{15} ) }{16 \sin( \frac{2\pi}{15} ) }  \\

 =  \frac{ \sin( \frac{2\pi}{15} ) }{16 \sin( \frac{2\pi}{15} ) }  \\

Answered by shrutikeshri09
3

Answer:

Hope this helps uh......

Attachments:

sanket5786: hi
sanket5786: wish you a very happy birthday
shrutikeshri09: thank you so much ❤❤
sanket5786: your most welcome
skpsai: hey sruti happy birthday
shrutikeshri09: thank you so much ❤❤
skpsai: hmmmmm
skpsai: hey shruti... how do u do
shrutikeshri09: hi
shrutikeshri09: I'm fine.. wt abt u
Similar questions