Math, asked by mehek27, 1 year ago

please do this question

Attachments:

Answers

Answered by Anonymous
2
Hi there !!
Here are your answers

Given,

(x -  \frac{1}{x} ) = 3
To find the value of :

 {x}^{2}  +  \frac{1}{  {x}^{2}  }
Using the algebraic identity (a-b)² = a²-2ab+b²,we have,


(x -  \frac{1}{x} ) {}^{2}  = 3 {}^{2}

  {x}^{2}  - 2(x)( \frac{1}{x}) +  \frac{1}{x {}^{2} }   = 9


 {x}^{2}  +  \frac{1}{x {}^{2} }  - 2 = 9

x {}^{2}  +  \frac{1}{x {}^{2} } = 9 + 2
Thus,
 {x}^{2}  +  \frac{1}{x {}^{2} }  = 11

Also,
the value of x⁴+1/x⁴ is also to be founded ,

In this case , the identity (a+b)² = a²+2ab+b² will be used
So,

( {x}^{2}   +  \frac{1}{ {x}^{2} }) {}^{2}   = 11 {}^{2}


 ({(x {}^{2}) }^{2}  + 2( {x}^{2})( \frac{1}{ {x}^{2} }  ) +  \frac{1}{ ({ {x}^{2}) }^{2} }  = 11 {}^{2}

 {x}^{4}  + 2 +  \frac{1}{ {x}^{4} } = 121

 {x}^{4}  +  \frac{1}{x {}^{4} }  = 121 - 2


x {}^{4}  +  \frac{1}{x {}^{4} }  = 119
Hence the value is 119

Anonymous: :-)
Anonymous: thanks for thr brainliest :-)
mehek27: most welcome
mehek27: sis
Anonymous: :-)
Similar questions