Math, asked by asisbuilders, 1 year ago

Please do this question

Attachments:

Answers

Answered by waqarsd
2

6 {x}^{2}  -  \sqrt{2} x - 2 \\  = 6 {x}^{2}    -   3 \sqrt{2} x + 2 \sqrt{2} x - 2 \\  = 3x(2x -  \sqrt{2} ) +  \sqrt{2} (2x -  \sqrt{2} ) \\  = (3 x +  \sqrt{2} )(2x -  \sqrt{2} )

hope it helps.

Answered by Anonymous
5
Answer :-

By using quadratic formula / Sridhacharyas equation

which is =  \frac{ -b ±\sqrt{b^2 - 4ac}}{2a}

Then by putting values above

=  \frac{ -(-\sqrt{2} ±\sqrt{\sqrt{2}^2 - 4 × 6 ×(- 2)}}{2 × 6}

=  \frac{ \sqrt{2} ±\sqrt{ 2 + 48 }}{12}

=  \frac{ \sqrt{2} ±\sqrt{ 50}}{12}

=  \frac{ \sqrt{2} ± 5\sqrt{ 2 }}{12}

=  \frac{ \sqrt{2} +5\sqrt{ 2 }}{12}

=  \frac{ 6\sqrt{ 2 }}{12}

=  \frac{ \sqrt{ 2 }}{2}

And

=  \frac{ \sqrt{2} - 5\sqrt{ 2 }}{12}

= -  \frac{ 4\sqrt{ 2 }}{12}

= -  \frac{ \sqrt{ 2 }}{3}

Then as x = -  \frac{ \sqrt{ 2 }}{3} and  \frac{ \sqrt{ 2 }}{2}

therefore factorisation

= (x -  \frac{ \sqrt{ 2 }}{3} ) ×(x +  \frac{ \sqrt{ 2 }}{2} )

or

(3x - √2) × (2x + √2)
Similar questions