Math, asked by kanchanabandi2, 2 months ago

please do urgent ..please guys​

Attachments:

Answers

Answered by gaurijain2007
1

Answer:

34

Step-by-step explanation:

1,771 = 7 × 11 × 23;

1,771 is not a prime, is a composite number;

66 = 2 × 3 × 11;

66 is not a prime, is a composite number;

Answered by Teluguwala
2

Option - D (23)

 \:

Step-by-step Explanation :

Given :-

 \:

 \displaystyle \sf⟼ \:  \: log \:   \bigg(\frac{x + y}{5} \bigg) \:  =  \:  \frac{1}{2}  \:  \bigg(log \: x \:  +  \: log \: y \bigg)

 \:

To Find :-

 \:

 \displaystyle \sf⟼ \:  \: What  \: is \:  the \:  value \:  of  \: \:   \frac{x}{y}  \:  +  \:  \frac{y}{x}

 \:

Explanation :

 \:

Given that,

 \:

\displaystyle \sf⟼ \:  \: log \:   \bigg(\frac{x + y}{5} \bigg) \:  =  \:  \frac{1}{2}  \:  \bigg(log \: x \:  +  \: log \: y \bigg)

 \:

\displaystyle \sf⟼ \:  \: log \:   \bigg(\frac{x + y}{5} \bigg) \:  =  \:  \frac{1}{2}  \:  \bigg(log \:x \:  +  \: y \bigg)

 \:

\displaystyle \sf⟼ \:  \: \frac{x + y}{5} \:  =  \:  log \:_{x} \frac{1}{2}  \:  +  \: log \:_{y} \frac{1}{2}

 \:

\displaystyle \sf⟼ \:  \: \frac{x + y}{5} \:  =  \:  log \:_{xy} \frac{1}{2}

 \:

\displaystyle \sf⟼ \:  \: \frac{x + y}{5} \:  =  \:  log \: \sqrt{xy}

 \:

\displaystyle \sf⟼ \:  \: \frac{x + y}{5} \:  = \: \frac{ \sqrt{xy} }{1}

 \:

By Cross Multiplication,

 \:

\displaystyle \sf⟼ \:  \: x + y \:  = \: 5 \: \sqrt{xy}

 \:

Squaring on both sides,

 \:

\displaystyle \sf⟼ \:  \: (x + y )^{2} \:  = \: (5 \: \sqrt{xy} )^{2}

 \:

\displaystyle \sf⟼ \:  \:  {x}^{2}  \: + \:  y ^{2}  \: + \:  2xy \:  = \: 5 \: \sqrt{xy}  \:  \times  \: 5 \: \sqrt{xy}

 \:

\displaystyle \sf⟼ \:  \:  {x}^{2}  \: + \:  y ^{2}  \: + \:  2xy \:  = \: 25 xy

 \:

\displaystyle \sf⟼ \:  \:  {x}^{2}  \: + \:  y ^{2}  \:  = \: 25 xy \:  -  \: 2xy

 \:

\displaystyle \sf⟼ \:  \:  {x}^{2}  \: + \:  y ^{2}  \:  = \: 23xy

 \:

\displaystyle \sf⟼ \:  \:  \frac{{x}^{2}  \: + \:  y ^{2}}{xy}    \:  = \: 23

 \:

\displaystyle \sf⟼ \:  \:  \cancel  \frac{ {x}^{2} }{xy}   \:  +  \:   \cancel\frac{ {y}^{2} }{xy}  = \: 23

 \:

\displaystyle \bf⟼ \:  \:  \frac{ {x} }{y}   \:  +  \:   \frac{ {y}}{x}  = \: 23

 \:

Hence,

 \:

 \displaystyle \sf⟼ \:  \: The \:  \:  value \: \:   of  \: \:   \frac{x}{y}  \:  +  \:  \frac{y}{x} \: \:  \:  is \:  \: \bf 23

 \:

Similar questions