Physics, asked by BrainlyShadow01, 7 months ago

Please don't post irrelevant answers
answer atleast 3 questions ​

Attachments:

Answers

Answered by shadowsabers03
9

1. By second equation of motion, displacement of the dropped body,

\sf{\longrightarrow s=ut+\dfrac{1}{2}\,gt^2}

Initial speed is zero since the body is dropped from height.

\sf{\longrightarrow s=\dfrac{1}{2}\,gt^2}

This implies,

\sf{\longrightarrow s\propto t^2}

\sf{\longrightarrow t\propto\sqrt s}

Therefore,

\sf{\longrightarrow \dfrac{t'}{t}=\sqrt{\dfrac{\left(\dfrac{h}{2}\right)}{h}}}

\sf{\longrightarrow\underline{\underline{t'=\dfrac{t}{\sqrt2}}}}

2. The displacement of the ball dropped freely is,

\sf{\longrightarrow s_1=\dfrac{1}{2}\,gt^2}

And that of the ball thrown vertically downwards.

\sf{\longrightarrow s_2=vt+\dfrac{1}{2}\,gt^2}

Then the separation between them is,

\sf{\longrightarrow \Delta s=s_2-s_1}

\sf{\longrightarrow \Delta s=vt+\dfrac{1}{2}\,gt^2-\dfrac{1}{2}\,gt^2}

\sf{\longrightarrow\underline{\underline{\Delta s=vt}}}

3. The distance moved by a freely falling body in \sf{n^{th}} second is the change in positions of the body after \sf{n} and \sf{n-1} seconds of dropping, i.e.,

\sf{\longrightarrow \Delta s_n=s_n-s_{n-1}}

\sf{\longrightarrow \Delta s_n=\left(un+\dfrac{1}{2}\,gn^2\right)-\left(u(n-1)+\dfrac{1}{2}\,g(n-1)^2\right)}

\sf{\longrightarrow \Delta s_n=u+\dfrac{1}{2}\,g(2n-1)}

For a freely falling body, \sf{u=0.}

\sf{\longrightarrow \Delta s_n=\dfrac{1}{2}\,g(2n-1)}

This implies,

\sf{\longrightarrow \Delta s_n\propto2n-1}

Therefore,

\sf{\longrightarrow \Delta s_1:\Delta s_2:\Delta s_3:\,\dots\,:\Delta s_n=(2\cdot1-1):(2\cdot2-1):(2\cdot3-1):\,\dots\,:(2n-1)}

\sf{\longrightarrow\underline{\underline{\Delta s_1:\Delta s_2:\Delta s_3:\,\dots\,:\Delta s_n=1:3:5:\,\dots\,:(2n-1)}}}

4. By third equation of motion, displacement of the body dropped is given by,

\sf{\longrightarrow v^2=2gh}

Since initial velocity is zero for a freely falling body.

Then,

\sf{\longrightarrow h=\dfrac{v^2}{2g}}

Taking \sf{g=10\ m\,s^{-2},}

\sf{\longrightarrow h=\dfrac{20^2}{2\cdot 10}}

\sf{\longrightarrow\underline{\underline{h=20\ m}}}


BrainIyMSDhoni: Great :)
Answered by polinamanoj
0

Explanation:

hope this answer helped you

Attachments:
Similar questions