Science, asked by BrainlyShadow01, 7 months ago

Please don't post irrelevant answers.
Good Morning

Attachments:

Answers

Answered by shadowsabers03
7

6. The given vectors can be represented in vector form as,

\longrightarrow\vec{\sf{A}}=\sf{15(\cos127^o\ \hat i+\sin127^o\ \hat j)}

\longrightarrow\vec{\sf{A}}=\sf{15\left(-\dfrac{3}{5}\ \hat i+\dfrac{4}{5}\ \hat j\right)}

\longrightarrow\vec{\sf{A}}=\sf{-9\ \hat i+12\ \hat j}

and,

\longrightarrow\vec{\sf{B}}=\sf{10(\cos53^o\ \hat i+\sin53^o\ \hat j)}

\longrightarrow\vec{\sf{B}}=\sf{10\left(\dfrac{3}{5}\ \hat i+\dfrac{4}{5}\ \hat j\right)}

\longrightarrow\vec{\sf{B}}=\sf{6\ \hat i+8\ \hat j}

Hence their resultant will be,

\longrightarrow\vec{\sf{R}}=\vec{\sf{A}}+\vec{\sf{B}}

\longrightarrow\vec{\sf{R}}=\sf{-9\ \hat i+12\ \hat j+6\ \hat i+8\ \hat j}

\longrightarrow\vec{\sf{R}}=\sf{(-9+6)\ \hat i+(12+8)\ \hat j}

\longrightarrow\vec{\sf{R}}=\sf{-3\ \hat i+20\ \hat j}

whose magnitude will be,

\sf{\longrightarrow R=\sqrt{(-3)^2+20^2}}

\sf{\longrightarrow R=\sqrt{9+400}}

\sf{\longrightarrow R=\sqrt{409}}

\sf{\longrightarrow\underline{\underline{R=20.19}}}

Hence (a) is the answer.

7. The vectors can be represented in vector form as,

\longrightarrow\vec{\sf{A}}=\sf{5\ \hat i}

and,

\longrightarrow \vec{\sf{B}}=\sf{5(\cos37^o\ \hat i+\sin 37^o\ \hat j)}

\longrightarrow \vec{\sf{B}}=\sf{5\left(\dfrac{4}{5}\ \hat i+\dfrac{3}{5}\ \hat j\right)}

\longrightarrow \vec{\sf{B}}=\sf{4\ \hat i+3\ \hat j}

and,

\longrightarrow\vec{\sf{C}}=\sf{5(\cos53^o\ \hat i+\sin53^o\ \hat j)}

\longrightarrow\vec{\sf{C}}=\sf{5\left(\dfrac{3}{5}\ \hat i+\dfrac{4}{5}\ \hat j\right)}

\longrightarrow\vec{\sf{C}}=\sf{3\ \hat i+4\ \hat j}

Hence their resultant will be,

\longrightarrow \vec{\sf{R}}=\vec{\sf{A}}+\vec{\sf{B}}+\vec{\sf{C}}

\longrightarrow\vec{\sf{R}}=\sf{5\ \hat i+4\ \hat i+3\ \hat j+3\ \hat i+4\ \hat j}

\longrightarrow\vec{\sf{R}}=\sf{(5+4+3)\hat i+(3+4)\ \hat j}

\longrightarrow\vec{\sf{R}}=\sf{12\ \hat i+7\ \hat j}

whose magnitude will be,

\sf{\longrightarrow R=\sqrt{12^2+7^2}}

\sf{\longrightarrow R=\sqrt{144+49}}

\sf{\longrightarrow R=\sqrt{193}}

\sf{\longrightarrow\underline{\underline{R=13.89}}}

Hence (c) is the answer.

Similar questions