Math, asked by BrainlyShadow01, 10 months ago

Please don't post irrelevant answers
it's urgent
Try to answer maximum 3 or 3+

Attachments:

Answers

Answered by Anonymous
32

Answer:

1)  \sqrt{a} *\sqrt[3]{a^2}* \sqrt[4]{a^3}:  \sqrt[6]{a^4}    \quad buscamos \ comun \ indice \to 12 \\  \\  \sqrt[2.6]{a^6} * \sqrt[3.4]{(a^2)^4} * \sqrt[4.3]{(a^3)^3} : \sqrt[6.2]{(a^4)^2}=  \\  \\  \sqrt[12]{a^6} * \sqrt[12]{(a)^8} * \sqrt[12]{(a)^9} : \sqrt[12]{(a)^8}=  \\  \\  \sqrt[12]{a^6*a^8*a^9}:  \sqrt[12]{a^8}=  \\  \\  \sqrt[12]{a^{23}}:  \sqrt[12]{a^8}=  \\  \\  \sqrt[12]{a^{23-8}}=  \\  \\   \sqrt[12]{a^{15}} =  \sqrt[12]{a^{12}}*  \sqrt[12]{a^3}=  \boxed{a \sqrt[4]{a}}

2)  \sqrt{2}.  \sqrt{6}=  \\  \\  \sqrt{2.6}=  \sqrt{12}=  \\  \\  \sqrt{4.3}=  \sqrt{4} \sqrt{3}=  \boxed{2 \sqrt{3}}

3) \sqrt{3}* \sqrt[3]{9}* \sqrt[4]{27}=  \\  \\  \sqrt[12]{3^6} * \sqrt[12]{(9)^4}*  \sqrt[12]{(27)^3}= \\  \\  \sqrt[12]{3^6} * \sqrt[12]{(3^2)^4}*  \sqrt[12]{(3^3)^3}=     \\  \\  \sqrt[12]{3^6} * \sqrt[12]{(3)^8}*  \sqrt[12]{(3)^9}=  \sqrt[12]{3 ^{6+8+9}}=   \sqrt[12]{3^{23}}=  \boxed{3 \sqrt[12]{3^{11}}}

4) ( \sqrt[3]{18})^2=  \\  \\   ( \sqrt[3]{2.3^2})^2=  \\  \\    \sqrt[3]{2^2.3^4}=  \sqrt[3]{2^2}* \sqrt[3]3^4}=  \boxed{3. \sqrt[3]{4.3}\to 3. \sqrt[3]{12} }

Answered by Anonymous
12

1)  \sqrt{a} *\sqrt[3]{a^2}* \sqrt[4]{a^3}:  \sqrt[6]{a^4}    \quad buscamos \ comun \ indice \to 12 \\  \\  \sqrt[2.6]{a^6} * \sqrt[3.4]{(a^2)^4} * \sqrt[4.3]{(a^3)^3} : \sqrt[6.2]{(a^4)^2}=  \\  \\  \sqrt[12]{a^6} * \sqrt[12]{(a)^8} * \sqrt[12]{(a)^9} : \sqrt[12]{(a)^8}=  \\  \\  \sqrt[12]{a^6*a^8*a^9}:  \sqrt[12]{a^8}=  \\  \\  \sqrt[12]{a^{23}}:  \sqrt[12]{a^8}=  \\  \\  \sqrt[12]{a^{23-8}}=  \\  \\   \sqrt[12]{a^{15}} =  \sqrt[12]{a^{12}}*  \sqrt[12]{a^3}=  \boxed{a \sqrt[4]{a}}

2)  \sqrt{2}.  \sqrt{6}=  \\  \\  \sqrt{2.6}=  \sqrt{12}=  \\  \\  \sqrt{4.3}=  \sqrt{4} \sqrt{3}=  \boxed{2 \sqrt{3}}

3) \sqrt{3}* \sqrt[3]{9}* \sqrt[4]{27}=  \\  \\  \sqrt[12]{3^6} * \sqrt[12]{(9)^4}*  \sqrt[12]{(27)^3}= \\  \\  \sqrt[12]{3^6} * \sqrt[12]{(3^2)^4}*  \sqrt[12]{(3^3)^3}=     \\  \\  \sqrt[12]{3^6} * \sqrt[12]{(3)^8}*  \sqrt[12]{(3)^9}=  \sqrt[12]{3 ^{6+8+9}}=   \sqrt[12]{3^{23}}=  \boxed{3 \sqrt[12]{3^{11}}}

4) ( \sqrt[3]{18})^2=  \\  \\   ( \sqrt[3]{2.3^2})^2=  \\  \\    \sqrt[3]{2^2.3^4}=  \sqrt[3]{2^2}* \sqrt[3]3^4}=  \boxed{3. \sqrt[3]{4.3}\to 3. \sqrt[3]{12} }

Similar questions