Physics, asked by BrainlyShadow01, 8 months ago

Please don't post irrelevant answers
post with complete solution.
post the answer with steps

Attachments:

Answers

Answered by shadowsabers03
8

2. If \theta is the angle between \vec{A} and \vec{B} then the vector component of \vec{B} acting along \vec{A} will be,

\longrightarrow\underline{\underline{\vec{B_A}=(B\cos\theta)\,\hat A}}

3. So the vector component of \vec{B} acting along \vec{A} is,

\longrightarrow\vec{B_A}=(B\cos\theta)\,\hat A

\longrightarrow\vec{B_A}=\left(\dfrac{AB\cos\theta}{A}\right)\,\hat A

Since AB\cos\theta=\vec{A}\cdot\vec{B} and \hat A=\dfrac{\vec A}{A},

\longrightarrow\vec{B_A}=\dfrac{\vec{A}\cdot\vec{B}}{A}\cdot\dfrac{\vec A}{A}

\longrightarrow\vec{B_A}=\dfrac{\vec{A}\cdot\vec{B}}{A^2}\,\vec A

If \vec{A}=A_x\,\hat i+A_y\,\hat j,

\longrightarrow\vec{B_A}=\dfrac{\vec{A}\cdot\vec{B}}{(A_x)^2+(A_y)^2}\,(A_x\,\hat i+A_y\,\hat j)

In the question,

  • \vec{A}=2\,\hat i+3\,\hat j
  • \vec{B}=3\,\hat i+4\,\hat j

Then, component of \vec{B} acting along \vec{A} is,

\longrightarrow\vec{B_A}=\dfrac{(2\,\hat i+3\,\hat j)\cdot(3\,\hat i+4\,\hat j)}{2^2+3^2}\,(2\,\hat i+3\,\hat j)

\longrightarrow\vec{B_A}=\dfrac{6+12}{4+9}\,(2\,\hat i+3\,\hat j)

\longrightarrow\underline{\underline{\vec{B_A}=\dfrac{18}{13}\,(2\,\hat i+3\,\hat j)}}

4. Here,

  • \vec A=3\,\hat i+4\,\hat j
  • \vec B=2\,\hat i+3\,\hat j

Then, component of \vec{B} acting along \vec{A} is,

\longrightarrow\vec{B_A}=\dfrac{(3\,\hat i+4\,\hat j)\cdot(2\,\hat i+3\,\hat j)}{3^2+4^2}\,(3\,\hat i+4\,\hat j)

\longrightarrow\vec{B_A}=\dfrac{6+12}{9+16}\,(3\,\hat i+4\,\hat j)

\longrightarrow\underline{\underline{\vec{B_A}=\dfrac{18}{25}\,(3\,\hat i+4\,\hat j)}}

Answered by LavishaHanda25
2

Answer:answer is in the above attached sheet

Attachments:
Similar questions