Physics, asked by MissMegha, 1 year ago

Please don't solve this

 \int \: sin {}^{2} x \: dx
Explain properly no copy..​

Answers

Answered by TheInsaneGirl
9

 \star \:  \: { \bold{ \underline{ \red{ \underline{Integration}}}}} \implies

 \int \: sin {}^{2} x \: dx \:

Here , we shall find the integral by using trigonometric identity .

{ \boxed{ \boxed{  \bold{\: Cos  \: 2 \:A  \: =  \: 1 - 2 Sin {}^{2}  \: A}}}}

From here we have ,

 \implies \: 2 \: Sin {}^{2} A \:  = 1 - Cos \: 2A \\  \\  \implies \:  \: Sin {}^{2} A \:  =  \dfrac{1 -Cos \: 2A }{2}

Hence , substitute this value of Sin² A in the given integral :

 \int \: sin {}^{2} x \: dx \:  =  \int \:  \dfrac{1  - Cos \: 2x  }{2}

Separating the integral ,

 \implies \:  \int \:  \dfrac{1}{2} dx \:  -  \int \:  \dfrac{Cos \: 2x}{2} dx \\  \\  \implies \:  \dfrac{x}{2}  -  \dfrac{sin \:  2x }{4}  + C \:

Which is the required answer !

Answered by Anonymous
0

Explanation:

Answer:

sin²x cos²x dx = (1/8)x - (1/8) sinx cos³x + (1/8) sin³x cosx + C

Step-by-step explanation:

Recall the double-angle identity sin(2x) = 2 sinx cosx;  

Hence:  

sinx cosx = (1/2) sin(2x) →  

sin²x cos²x = (sinx cosx)² = [(1/2) sin(2x)]² = (1/4)sin²(2x)  

Thus the given integral becomes:  

∫ sin²x cos²x dx = ∫ (1/4)sin²(2x) dx = (1/4) ∫ sin²(2x) dx  

Now you can reduce the order of the integrand using the half-angle identity:  

sin²x = (1/2) [1 - cos(2x)]  

and Therefore:  

sin²(2x) = (1/2) [1 - cos(4x)]  

Yielding:  

(1/4) ∫ (1/2) [1 - cos(4x)] dx =  

(1/4)(1/2) ∫ [1 - cos(4x)] dx =  

(1/8) ∫ [1 - cos(4x)] dx =  

Split it into:  

(1/8) ∫ dx - (1/8) ∫ cos(4x) dx =  

(1/8)x - (1/8) (1/4)sin(4x) + C =  

(1/8)x - (1/32)sin(4x) + C  

Then, taking it back in terms of sinx, cosx, you get (recall the double-angle identity cos(2x) = cos²x - sin²x, as well):  

∫ sin²x cos²x dx = (1/8)x - (1/32)sin(4x) + C →  

∫ sin²x cos²x dx = (1/8)x - (1/32) 2sin(2x) cos(2x) + C →  

∫ sin²x cos²x dx = (1/8)x - (1/16) 2sinx cosx (cos²x - sin²x) + C →  

∫ sin²x cos²x dx = (1/8)x - (1/8) (sinx cos³x - sin³x cosx) + C →  

Finally,  

∫ sin²x cos²x dx = (1/8)x - (1/8) sinx cos³x + (1/8) sin³x cosx + C

Similar questions