Math, asked by itzselfiequeen25, 6 months ago

please don't spam and answer with solution ​

Attachments:

Answers

Answered by senboni123456
1

Step-by-step explanation:

31.

Consider the given number

(1 + a)(1 + b)(1 + c) = (1 + a + b + ab)(1 + c) = (1 + a + b  + c+ ab +bc + ac + abc)  \\

Now,

 [(1 + a)(1 + b)(1 + c)]^{7}  =  [1 + a + b + c + ab + bc + ca + abc)]^{7}  >  [a + b + c + ab + bc + ca + abc]^{7}  ...(i)\\

We know that, for any numbers, its AM ≥ GM

 \frac{a + b + c + ab + bc + ca + abc}{7}  \geqslant (a.b.c.ab.bc.ca.abc)^{ \frac{1}{7} } \\

 \implies a + b + c + ab + bc + ca + abc \geqslant 7.( {a}^{4} {b}^{4}   {c}^{4} ) ^{ \frac{1}{7} }  \\

 \implies( a + b + c + ab + bc + ca + abc )^{7} \geqslant 7^{7} .( {a}^{4} {b}^{4}   {c}^{4} )   \\

Now, from (i) we get,

(1 + a + b + c + ab + bc + ca + abc)^{7}  >  {7}^{7} . {a}^{4}  {b}^{4}  {c}^{4}

Similar questions