Math, asked by Arpita102028, 2 months ago

Please don't spam
Please give correct answer​

Attachments:

Answers

Answered by misscutie94
28

Answer:

Question :-

\dfrac{5}{6} and \dfrac{4}{3} are the two roots of the quadratic equation x + \dfrac{1}{x} = \dfrac{13}{6} - Whether True or False.

Solution :-

\because x + \dfrac{1}{x} =\: \dfrac{13}{6}

\Rightarrow \dfrac{x^2 + 1}{x} = \dfrac{13}{6}

\Rightarrow 6x² + 6 = 13x

\Rightarrow6x² - 13x + 6 = 0 [a quadratic equation of the form ax² + bx + c = 0 (a ≠ 0) ]

Now, 6x² - 9x - 4x + 6 = 0

\Rightarrow 3x(2x - 3) - 2(2x - 3) = 0

\Rightarrow (2x - 3) (3x - 2) = 0

\therefore 2x - 3 = 0

\Rightarrow 2x = 3

\Rightarrow  x = \dfrac{3}{2}

\Rightarrow 3x - 2 = 0

\Rightarrow 3x = 2

\Rightarrow  x = \dfrac{2}{3}

Hence, the roots of the equation are : \dfrac{3}{2} , \dfrac{2}{3}

Thus, the statement is false.

Answered by BrainlyPopularman
11

GIVEN :

• Quadratic equation x + 1/x = 13/6 have two roots & 4/3 .

To Check :

Is the given condition is true or false ?

SOLUTION :

  \\ \implies \bf x +  \dfrac{1}{x} =  \dfrac{13}{6}  \\

  \\ \implies \bf \dfrac{ {x}^{2}  + 1}{x} =  \dfrac{13}{6}  \\

  \\ \implies \bf6({x}^{2}  + 1) =13x \\

  \\ \implies \bf6{x}^{2}+6 =13x \\

  \\ \implies \bf6{x}^{2} - 13x+6  = 0\\

• We know that –

  \\ \implies \bf Sum \:  \: of \:  \: roots = -  \dfrac{b}{a}  \\

  \\ \implies \bf  \dfrac{5}{6} +  \dfrac{4}{3}  = -  \dfrac{( - 13)}{6}  \\

  \\ \implies \bf  \dfrac{5 + 8}{6}=\dfrac{13}{6}  \\

  \\ \implies \bf  \dfrac{13}{6}=\dfrac{13}{6} (\checkmark) \\

• We also know that –

  \\ \implies \bf Product \:  \: of \:  \: roots =  \dfrac{c}{a}  \\

  \\ \implies \bf  \dfrac{5}{6} \times  \dfrac{4}{3}  = \dfrac{6}{6}  \\

  \\ \implies \bf  \dfrac{20}{18}=\dfrac{6}{6}  \\

  \\ \implies \bf  \dfrac{10}{9}=1 (\sf X) \\

Hence , Given statement is false.

Similar questions