Math, asked by gajjelarajeswari32, 4 months ago

please don't spam please tell answer​

Attachments:

Answers

Answered by anindyaadhikari13
7

Required Answer:-

Given to evaluate:

  •   \sf \bigg(  \dfrac{ {x}^{3n + 1} \times  {x}^{3n - 1} }{ {x}^{2n + 1} } \bigg)^{2}

Solution:

We know that,

 \sf \implies {x}^{a} \times  {x}^{b}  =  {x}^{a + b}

Therefore,

  \sf \bigg(  \dfrac{ {x}^{3n + 1} \times  {x}^{3n - 1} }{ {x}^{2n + 1} } \bigg)^{2}

  \sf  = \bigg(  \dfrac{ {x}^{3n + 1 + 3n - 1}}{ {x}^{2n + 1} } \bigg)^{2}

  \sf  = \bigg(  \dfrac{ {x}^{6n}}{ {x}^{2n + 1} } \bigg)^{2}

We know that,

 \sf \implies \dfrac{ {x}^{a} }{ {x}^{b} }  =  {x}^{a - b}

So,

  \sf  \bigg(  \dfrac{ {x}^{6n}}{ {x}^{2n + 1} } \bigg)^{2}

  \sf   =  {( {x}^{6n - 2n - 1}) }^{2}

  \sf   =  {( {x}^{4n - 1}) }^{2}

  \sf   =  {x}^{2(4n - 1)}

  \sf   =  {x}^{8n - 2}

Hence, the final value is x⁸ⁿ/

Answer:

  • The simplified form of the expression is x⁸ⁿ/x²
Answered by ITZBFF
193

 \mathrm \red{Given  :  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: } \\  \\  \mathsf{ {\Bigg( \frac{ {x}^{3n + 1} \:  . \:  {x}^{3n - 1} }{ {x}^{2n + 1} }  \Bigg)}^{2}  \:  \:  \:  \:  \:  \: (x \cancel{ = }0) \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: } \\  \\   \mathsf{ {\Bigg(  \frac{{x}^{(3n + 1 + 3n - 1)} }{ {x}^{2n + 1} }\Bigg)}^{2}  } \:  \:  \:  \:  \mathrm \green{\Big[  {a}^{m}. {a}^{n}  \: =  \:  {a}^{(m + n)} \Big  ]}

 \mathsf{ =  {\Bigg(  \frac{{x}^{(3n + 1 + 3n - 1)} }{ {x}^{2n + 1} }\Bigg)}^{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \: } \\  \\  \mathsf{ =  {\Big( {x}^{6n - (2n + 1)} \Big)}^{2} } \:  \:  \:  \:  \:  \:  \:  \:  \ \:  \mathsf \green{\Bigg[  \frac{ {x}^{m} }{ { {x}^{n}} }  =  {x}^{m - n}\Bigg]  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:}

 \mathsf{  {=  ({x}^{(6n - 2n - 1)})}^{2} } \\  \\  \mathsf{ =  {({x}^{4n - 1 })}^{2} \:  \:  \:  \:  \:  \:  \:  \:  } \\  \\  \mathsf{ =  \:  {x}^{8n - 2} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  } \\  \\

  \mathsf{  =\Big( \frac{ {x}^{8n} }{ {x}^{2} } \Big) } \\  \\

 \\  \boxed { \therefore \:  \:  \:  \: \mathsf \red{ {\Bigg( \frac{ {x}^{3n + 1} \:  . \:  {x}^{3n - 1} }{ {x}^{2n + 1} }  \Bigg)}^{2}} \:  \:  \red{ =}  \:   \mathsf \red{\frac{ {x}^{8n} }{ {x}^{2}} } }

Similar questions