Math, asked by ScatricLongSmile, 2 months ago

Please don't sppam!!

1.If α and β are zeroes of the polynomial x²-2x-15 then form a quadratic polynomial whose zeroes 2α and 2β.

spam answers are reported !!
Remember



•Don't greedy for points !!!​

Answers

Answered by BrainlyShinestar
126

Given : If α and β are zeroes of the polynomial x²-2x-15

To Find : A quadratic polynomial whose zeroes 2α and 2β ?

______________________

❍ First Find out all Cofficients of Given Polynomial x²-2x-15.

  • Cofficients of x² = 1

  • Cofficients of x = -2

  • Cofficients Term = -15

~

\leadsto α & β are two zeroes of Polynomial x²-2x-15.

~

\underline{\frak{As~ we ~know~ that~:}}

  • \boxed{\sf\pink{ \alpha  +  \beta  =  \dfrac{ - Cofficients \: of \: x}{cofficients \: of \:  {x}^{2} }}}

~

\underline{\bf{Now~ By ~Substituting ~the ~Cofficients~:}}

~

~~~~~~~~~~{\sf:\implies{\alpha  +  \beta  =  \dfrac{ - ( - 2)}{1} }}

~~~~~~~~~~{\sf:\implies{\alpha + \beta = \dfrac{2}{1}}}

Or,

~~~~~~~~~~{\sf:\implies{\boxed{\frak{\pink{\alpha + \beta~ = ~2}}}}}

~

\underline{\frak{As ~we ~know~ that~:}}

~

~~~~~~~~~~{\sf:\implies\pink{\alpha × \beta ~=~\dfrac{Constant ~Term}{Cofficient~of~x^2}}}

~

\underline{\bf{Now ~By ~Substituting~ the ~Cofficients~:}}

~

~~~~~~~~~~{\sf:\implies{\alpha × \beta~=~\dfrac{-15}{1}}}

Or,

~~~~~~~~~~{\sf:\implies{\underline{\boxed{\frak{\pink{\alpha × \beta~=~-15}}}}}}

~

_________________________

\underline{\frak{As~ we ~know~ that~:}}

  • Quadratic Polynomial = - (Sum of zeroes) x + Product of zeroes.

~

Given that,

  • The zeroes of new formed Polynomial will be 2α & 2β.

~

\underline{\bf{Now~ By ~Substituting ~the ~Given ~Values~:}}

~

~~~~~~~~~~{\sf:\implies{\bigg(x^2~-~(2\alpha~ + ~2\beta)x~+~(2\alpha~+~2\beta)\bigg)}}

~~~~~~~~~~{\sf:\implies{\bigg(x^{2}~-~2(\alpha~+~\beta)x~+~(2\alpha~+~2\beta)\bigg)}}

~~~~~~~~~~{\sf:\implies{\bigg(x^{2}~-~2(\alpha~+~\beta)x~+~4\alpha\beta\bigg)}}

~

\underline{\frak{As ~we~ have ~found~:}}

~

~~~~~~~~~~{\sf:\implies{\alpha~×~\beta~=~-15}}

~~~~~~~~~~{\sf:\implies{\alpha~+~\beta~=~2}}

~~~~~~~~~~{\sf:\implies{\bigg(x^{2}~-~2(2)x~+~4(-15)\bigg)}}

~~~~~~~~~~{\sf:\implies{\bigg(x^{2}~-~4x~-~60\bigg)}}

Or,

  • {\underline{\boxed{\frak{\pink{New~ Formed ~Quadratic~ Polynomial ~=~x^{2}~-~4x~-~60}}}}}

~

Hence,

\therefore\underline{\sf{New~ Formed ~Quadratic ~Polynomial~=~\bf{x^{2}~-~4x~-~60}}}

Similar questions