Physics, asked by cindrella45, 9 months ago

please dont spam it​

Attachments:

Answers

Answered by Rajshuklakld
2

Solution:-Putting the value of x directly in the value which we have to find will make it more complicated,,and difficulty in solve....

As we can se

3 - 2 \sqrt{2}  = ( { \sqrt{2} - 1) }^{2}   \:  \\  so \: x \: will \:also \: be \: equal \: to \: ( {  \sqrt{2}   - 1)}^{2}   \\ putting \: this \: value \: of \: x \: we \: get \\  \sqrt{x}  +  \frac{1}{ \sqrt{x} }  =  \sqrt{ { (\sqrt{2 } - 1) }^{2} }   +  \frac{1}{ \sqrt{ {( \sqrt{2} - 1) }^{2} } }  \\   \sqrt{x}  +  \frac{1}{ \sqrt{x} }  =  \sqrt{2}  - 1 +  \frac{1}{ \sqrt{2} - 1 }  =  \frac{( { \sqrt{2} - 1) }^{2}  + 1}{ \sqrt{2 }  - 1}  \\  =  \frac{2 + 1 - 2 \sqrt{2} + 1 }{ \sqrt{2} - 1 }  \\ =  >   \sqrt{x}  +  \frac{1}{ \sqrt{x} }  =  \frac{4 - 2 \sqrt{2} }{ \sqrt{2} - 1 }   \\ takiing \: out \: 2 \sqrt{2} common \: from \: num \:  \\ we \: get \\  \sqrt{x}  +  \frac{1}{ \sqrt{x} }  =  \frac{2 \sqrt{2}( \sqrt{2}  - 1) }{( \sqrt{2} - 1) }  = 2 \sqrt{2}  \\ hence \: 2 \sqrt{2} is \: the \: right \: answer \\  (hope \: it \: helps)

Similar questions