Math, asked by elinorandrea7, 10 hours ago

Please elaborate all steps.

Attachments:

Answers

Answered by mathdude500
10

\large\underline{\sf{Solution-}}

Given that,

\rm \: \displaystyle\sum_{n=0}^{ \infty }\rm  {a}^{n} \:  =  \: x \\

\rm \: x =  {a}^{0} +  {a}^{1} +  {a}^{2} +  \cdots \cdots \infty  \\

\rm \: x =  1 +  {a}^{1} +  {a}^{2} +  \cdots \cdots \infty  \\

So, its an infinite GP series with First term 1 and common ratio 'a'.

Also, provided that |a| < 1.

So, using sum of infinite GP series, we get

\rm \: x = \dfrac{1}{1 - a}  \\

\rm \: 1 - a = \dfrac{1}{x}  \\

\rm \:  - a = \dfrac{1}{x}- 1\\

\rm \:  a =1 -  \dfrac{1}{x}\\

So,

\bf\implies \:  a =1 -  \dfrac{1}{x}\\

Similarly,

\bf\implies \:  b =1 -  \dfrac{1}{y}\\

and

Similarly,

\bf\implies \:  c =1 -  \dfrac{1}{z}\\

Further, given that

\bf \: a, b, c\:are\:in\:AP \\

\rm\implies \:2b = a + c \\

On substituting the values of a, b, c from above, we get

\rm \: 2\bigg(1 - \dfrac{1}{y}  \bigg) = 1 - \dfrac{1}{x}  + 1 - \dfrac{1}{z}  \\

\rm \: 2 - \dfrac{2}{y}= 2 - \dfrac{1}{x} - \dfrac{1}{z}  \\

\rm \: - \dfrac{2}{y}=  - \dfrac{1}{x} - \dfrac{1}{z}  \\

\rm \: \dfrac{2}{y}= \dfrac{1}{x} +  \dfrac{1}{z}  \\

\bf\implies \: \frac{1}{x} ,  \frac{1}{y} ,  \frac{1}{z} \:are\:in\:AP \\

\bf\implies \:x, y, z\:are\:in\:HP \\

So, option 4) is correct.

\rule{190pt}{2pt}

Formula Used :-

Sum of infinite GP series with first term a and common ratio r such that |r| < 1, is given by

\boxed{ \rm{ \:S_ \infty  \:  =  \: \dfrac{a}{1 - r} \: }} \\

Answered by talpadadilip417
5

\mathbb\red{ \tiny A \scriptsize \: N \small \:S \large \: W \Large \:E \huge \: R}

 \rule{300pt}{0.1pt}

\rm x=\sum_{n=0}^{\infty} a^{n}  \quad\Rightarrow x=\frac{1}{1-a}  \quad\Rightarrow a=\frac{x-1}{x}  \\

 \rm y=\sum_{n=0}^{\infty} b^{n}  \quad\Rightarrow y=\frac{1}{1-b}  \quad\Rightarrow b=\frac{y-1}{y}  \\

 \rm z=\sum_{n=0}^{\infty} c^{n}  \quad\Rightarrow z=\frac{1}{1-c}  \quad\Rightarrow c=\frac{z-1}{z}  \\

a, b, c are in A.P.

 \text{\( \rm \Rightarrow \dfrac{x-1}{x}, \dfrac{y-1}{y}, \dfrac{z-1}{z} \) are in A.P.}

 \text{ \( \rm \Rightarrow 1-\dfrac{1}{x}, 1-\cfrac{1}{y}, 1-\dfrac{1}{z} \) are in A.P.}

 \text{ \( \rm \Rightarrow-\dfrac{1}{x},-\cfrac{1}{y},-\dfrac{1}{z} \) are in A.P.}

 \text{ \( \rm \Rightarrow x, y, z \) are in H.P.}

Similar questions