Math, asked by bikashs489, 5 months ago

please evaluate and help me​

Attachments:

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

 \lim_{x \rarr \infty }  \sqrt{x}  (\sqrt{x + 3}  -  \sqrt{x} ) \\

 \lim _{x \rarr \infty } \frac{ \sqrt{x}(x + 3 - x) }{( \sqrt{x + 3}  +  \sqrt{x} )}  \\

 = \lim_{x \rarr \infty }  \frac{3 \sqrt{x} }{ \sqrt{x + 3}  +  \sqrt{x} }  \\

 = \lim_{x \rarr \infty } \frac{3}{ \sqrt{ 1 + \frac{3}{x} } + 1 }  \\

 =  \frac{3}{1 + 1}  \\

 =  \frac{3}{2}   \\

Similar questions