Math, asked by savitahebballi, 10 months ago

please evaluate this by rationalising the denominator ​

Attachments:

Answers

Answered by kiran12355
0

Step-by-step explanation:

answer as shown above.......

Attachments:
Answered by Anonymous
1

Answer:

Hi mate

Here is ur answer ✏

\huge\mathfrak{\underline{\underline{\red{Answer}}}}

\sf  \frac{ \sqrt{2 }  +  \sqrt{3} }{3 \sqrt{2} - 2 \sqrt{3}  }  \times  \frac{3 \sqrt{2}  + 2 \sqrt{3} }{3 \sqrt{2 }  + 2 \sqrt{3} }  = x - y \sqrt{6}

\sf  \frac{3 \times 2 + 2 \times 3}{9 \times 2 - 4 \times 3}  = x - y \sqrt{6}

\sf  \frac{12}{6}  = x - y \sqrt{6}

\sf 2 =  x - y \sqrt{6}

\sf \: x -  \sqrt{6} y - 2 = 0

\sf \: x -  \sqrt{6} y - 2 = 0

\Rightarrow\sf \: a = 1

\Rightarrow\sf \: b =  -  \sqrt{6}

\Rightarrow\sf \: c =  - 2

\sf\frac{ -b +  \sqrt{ {b}^{2} - 4ac }  }{2a}

\sf =  \frac{ \sqrt{6}  +  \sqrt{ -  ({6})^{2} }  - 4 \times 1 \times ( - 2)} {2 \times 1}

\sf =  \frac{ \sqrt{6}  +  \sqrt{6 + 8} }{2}

\frac{ \sqrt{6 }  +  \sqrt{14} }{2}

\sf  \frac{ \sqrt{6} + \sqrt{14}  }{2}   \:  \: and \:  \frac{ \sqrt{6} -   \sqrt{14}  }{2}

\Rightarrow\sf \: x =  \frac{ \sqrt{6}  +  \sqrt{14} }{2}

\Rightarrow\sf \: y  =  \frac{ \sqrt{6} -  \sqrt{14}  }{2}

Similar questions