Please explain all the laws of algebra of sets. Please explain clearly.
Don’t explain if you don’t know.
Answers
Step-by-step explanation:
The preceding five pairs of laws, the commutative, associative, distributive, identity and complement laws can be said to encompass all of set algebra, in the sense that every valid proposition in the algebra of sets can be derived from them
Answer:
Commutative Laws:
For any two finite sets A and B;
(i) A U B = B U A
(ii) A ∩ B = B ∩ A
Associative Laws:
For any three finite sets A, B and C;
(i) (A U B) U C = A U (B U C)
(ii) (A ∩ B) ∩ C = A ∩ (B ∩ C)
Thus, union and intersection are associative.
Idempotent Laws:
For any finite set A;
(i) A U A = A
(ii) A ∩ A = A
Distributive Laws:
For any three finite sets A, B and C;
(i) A U (B ∩ C) = (A U B) ∩ (A U C)
(ii) A ∩ (B U C) = (A ∩ B) U (A ∩ C)
Thus, union and intersection are distributive over intersection and union respectively.
De Morgan’s Laws:
For any two finite sets A and B;
(i) A – (B U C) = (A – B) ∩ (A – C)
(ii) A - (B ∩ C) = (A – B) U (A – C)
De Morgan’s Laws can also we written as:
(i) (A U B)’ = A' ∩ B'
(ii) (A ∩ B)’ = A' U B'
More laws of algebra of sets:
For any two finite sets A and B;
(i) A – B = A ∩ B'
(ii) B – A = B ∩ A'
(iii) A – B = A ⇔ A ∩ B = ∅
(iv) (A – B) U B = A U B
(v) (A – B) ∩ B = ∅
(vi) A ⊆ B ⇔ B' ⊆ A'
(vii) (A – B) U (B – A) = (A U B) – (A ∩ B)
For any three finite sets A, B and C;
(i) A – (B ∩ C) = (A – B) U (A – C)
(ii) A – (B U C) = (A – B) ∩ (A – C)
(iii) A ∩ (B - C) = (A ∩ B) - (A ∩ C)
(iv) A ∩ (B △ C) = (A ∩ B) △ (A ∩ C)