Math, asked by anushi01, 1 year ago

please explain .... Ans batado jldi ​

Attachments:

Answers

Answered by Ritu012
3

Answer:

let

y =  {27}^{ \sin \alpha } \times  {81}^{ \cos\alpha }  \\ taking \: log \: both \: the \: sides \\  ln(y)  =  \sin( \alpha )  ln(27)   \\  +  \cos( \alpha )  ln(81)  \\ now \: differentiating \:wrt \: x \\    \frac{d ln(y) }{dx}  =  \cos( \alpha )  ln(27)  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  -  \sin( \alpha )  ln(81)  \\  0  \:  \:  \:  \:  \:  \:  \:  \:  = (  \cos( \alpha )  ln( {3}^{3} )    \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: -  \sin( \alpha  )ln( {3}^{4} ) )

 \sin( \alpha )  ln( {3}^{4} )  =  \cos( \alpha )  ln( {3}^{3} )  \\  \tan( \alpha )  =   \frac{ ln( {3}^{3} ) }{ ln( {3}^{4} ) }   =  \frac{3 ln(3) }{4 ln(3) }   =  \frac{3}{4}

 \tan( \alpha )  =  \frac{p}{b} \\using \: pythagoras \: theorem \\  hypo. =  \sqrt{ {p}^{2} +  {b}^{2}  }  \\ hypo. =  \sqrt{9 + 16}  = 5

 \cos( \alpha )  =  \frac{b}{h}  =  +  -  \frac{4}{5}

 \sin( \alpha )  =  +  -  \frac{3}{5}

put small value of sin theta and cos theta in your equation

we get

 {3}^{3 \sin( \alpha ) } . {3}^{4 \cos( \alpha ) }  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =  {3}(^{3 \times   \frac{ - 3}{5}  + 4 \times  \frac{ - 4}{5} } )\\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =   {3}^{ \frac{ - 9}{5} -  \frac{16}{5}  }   \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  =   {3}^{  \frac{ - 25}{5} }  =  {3}^{ - 5}

the minimum value of eq

 {3}^{ - 5}  =  \frac{1}{243}

the maximum value is

{3}^{3 sin(  \alpha  ) } . {3}^{4 \cos( \alpha ) }  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =  {3}(^{3 \times   \frac{ 3}{5}  + 4 \times  \frac{ 4}{5} } )\\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =   {3}^{ \frac{ 9}{5}  + \frac{16}{5}  }   \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  =   {3}^{  \frac{ 25}{5} }  =  {3}^{ 5}  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = 243

hope this will help u.......

Similar questions