Math, asked by zoyanoor777, 3 days ago

Please Explain Answer of this question​

Attachments:

Answers

Answered by MysticSohamS
2

Answer:

hey here is your solution

pls mark it as brainliest

Step-by-step explanation:

to \: find =  \\ mean \: of \: a \: and \: b \\  \\ so \: here \\  \\  \frac{1}{a {}^{2} }  -  \frac{1}{b {}^{2} }  =  \frac{1}{c}  \\  \\ ab =  \sqrt{c}  \:  \:  \:  \:  \:  \: (1) \\  \\ thus \: then \\  \\  \frac{1}{a {}^{2} }  -  \frac{1}{b {}^{2} }  =  \frac{1}{c}  \\  \\  \frac{b {}^{2} - a {}^{2}  }{a {}^{2}b {}^{2}  }  =  \frac{1}{c}  \\  \\  =  \frac{b {}^{2} - a {}^{2}  }{(ab) {}^{2} }  =  \frac{1}{c}  \\ \\ from \: (1) \\ we \: had \\   \\  \frac{b {}^{2} - a {}^{2}  }{( \sqrt{c}  ){}^{2} }  =  \frac{1}{c}  \\  \\  =  \frac{b {}^{2}  - a {}^{2} }{c}  =  \frac{1}{c}  \\  \\ b {}^{2}  - a {}^{2}  = 1 \\  \\ (b + a)(b - a) = 1 \\  \\ a + b =  \frac{1}{b - a}   \:  \:  \:  \:  \:  \:  \: (2)\\  \\ so \: thus \: then \\  \\ average \: (mean) \: of \: a \: and \: b =  \frac{a + b}{2}  \\  \\ from \: (2) \\ we \: had \\  \\  =  \frac{ \frac{1}{b - a} }{2}  \\  \\  =  \frac{1}{2(b - a)}

Similar questions