Math, asked by Anonymous, 11 months ago

Please explain how u got answer​

Attachments:

Answers

Answered by ss141309
2

Answer:

\frac{1}{p^2} =\frac{1}{a^2} +\frac{1}{b^2}

Step-by-step explanation:

Converting the Intercept form to the General form

\frac{x}{a} +\frac{y}{b} =1

\frac{bx+ay}{ab} =1

bx+ay=ab

bx+ay-ab=0   Hence Converted

Perpendicular distance of a point  P(x_1,y_1)  to the line Ax+By+C=0 is:

                                                   \frac{\lvert Ax_1+By_1+C \rvert}{\sqrt{A^2+B^2}}

Here (x_1,y_1)  is  (0,0) and Ax+By+C=0  is  bx+ay-ab=0

Substituting the values:

\frac{\lvert b(0)+a(0)-ab \rvert}{\sqrt{b^2+a^2}}

= \frac{ab}{\sqrt{a^2+b^2}}

Now perependicular distance  p=\frac{ab}{\sqrt{a^2+b^2}}

p^2=\frac{a^2b^2}{a^2+b^2}

\frac{1}{p^2}=\frac{a^2+b^2}{a^2b^2}

\frac{1}{p^2}=\frac{a^2}{a^2b^2}+\frac{b^2}{a^2b^2}

\frac{1}{p^2}=\frac{1}{b^2}+\frac{1}{a^2}

∴ Ans = \frac{1}{p^2}=\frac{1}{a^2}+\frac{1}{b^2}

Answered by alsohabagban020
2

Step-by-step explanation:

MISSSS UHHHHH BOTH ❣️❣️❣️❣️❣️

Attachments:
Similar questions