Math, asked by nandika251203, 1 year ago

please explain
if (7+√5)/(7-√5) - (7-√5)/(7+√5) = a+(7/11)√5b find value of a and b

Answers

Answered by Draxillus
293
heya user !!

refer to given attachment please
Attachments:
Answered by aquialaska
122

Answer:

a=\frac{27}{22}\:\:and\:\:b=\frac{1}{2}

Step-by-step explanation:

Given: \frac{7+\sqrt{5}}{7-\sqrt{5}}=a+\frac{5}{11}\sqrt{5}b

To find: value of a and b

First we rationalize the denominator of LHS and them compare the answer with RHS to find value of a & b

LHS=\frac{7+\sqrt{5}}{7-\sqrt{5}}

      =\frac{7+\sqrt{5}}{7-\sqrt{5}}\times\frac{7+\sqrt{5}}{7+\sqrt{5}}

      =\frac{(7+\sqrt{5})(7+\sqrt{5})}{(7-\sqrt{5})(7+\sqrt{5})}

      =\frac{7^2+(\sqrt{5})^2+14\sqrt{5}}{7^2-(\sqrt{5})^2}

      =\frac{49+5+14\sqrt{5}}{49-5}

      =\frac{54+14\sqrt{5}}{44}

      =\frac{54}{44}+\frac{14\sqrt{5}}{44}

      =\frac{27}{22}+\frac{7\sqrt{5}}{22}

RHS=a+\frac{7}{11}\sqrt{5}b

\implies a=\frac{27}{22}

\implies \frac{7}{11}\sqrt{5}b=\frac{7\sqrt{5}}{22}

b=\frac{1}{2}

Therefore, a=\frac{27}{22}\:\:and\:\:b=\frac{1}{2}

Similar questions