English, asked by Anonymous, 3 months ago

Please explain in full details and please don't spam I need a full Solution and it's urgent :(

A two digit number is such that the product of its digit is 12 . When 36 is added to this number, the digits interchange their places. Find the number​

Answers

Answered by donkey5
3

Answer:

HOPE THIS HELPS...

YOUR ANSWER IS IN THE ATTACHMENT...

Attachments:
Answered by ItzBrainlyBeast
25

\LARGE\textsf{\underline\textcolor{aqua}{↭ SoLuTioN :-}}

\large\textsf{                                                               }

\qquad\tt{:}\longrightarrow\large\textsf{Let the number at the units place be ' y ' }

\qquad\tt{:}\longrightarrow\large\textsf{Let the number at the tens place be ' x ' }

\qquad\tt{:}\longrightarrow\large\textsf{So the number formed will be ' 10x + y}

\large\textsf{                                                               }

According to the first condition we write the assumption :-

\large\textsf{                                                               }

\qquad\tt{:}\longrightarrow\boxed{\large\textsf{xy = 12 -------- ( i )}}

\large\textsf{                                                               }

According to the second condition we write the assumption :-

\large\textsf{                                                               }

\qquad\tt{:}\longrightarrow\large\textsf{10x + y + 36 = 10y + x}

\qquad\tt{:}\longrightarrow\large\textsf{10x - x + y - 10y + 36 = 0}

\qquad\tt{:}\longrightarrow\large\textsf{9x - 9y + 36 = 0}

\qquad\tt{:}\longrightarrow\large\textsf{x - y + 4 = 0 ------ ( Dividing by 9 on both the side's )}

\qquad\tt{:}\longrightarrow\boxed{\large\textsf{x = y - 4}}

\large\textsf{                                                               }

Substituting the value of ' x ' in the eq. ( i ) :-

\large\textsf{                                                               }

\qquad\tt{:}\longrightarrow\large\textsf{( y - 4 )y = 12}

\qquad\tt{:}\longrightarrow\large\textsf{y² - 4y = 12}

\qquad\tt{:}\longrightarrow\large\textsf{y² - 4y - 12 = 0}

\qquad\tt{:}\longrightarrow\large\textsf{y² - 6y + 2y - 12 = 0}

\qquad\tt{:}\longrightarrow\large\textsf{y ( y - 6 ) + 2 ( y - 6 ) = 0}

\qquad\tt{:}\longrightarrow\large\textsf{( y + 2 )( y - 6 ) = 0}

\qquad\tt{:}\longrightarrow\boxed{\large\textsf{y = - 2 or y = 6}}

\large\textsf{                                                               }

As the given number can't be negative :-

\large\textsf{                                                               }

\qquad\tt{:}\longrightarrow\boxed{\large\textsf\textcolor{red}{∴ The Value of y = 6}}

\large\textsf{                                                               }

Substituting the value of ' y ' in eq. ( i ) :-

\large\textsf{                                                               }

\qquad\tt{:}\longrightarrow\large\textsf{6x = 12}

\qquad\tt{:}\longrightarrow\large\textsf{x =$\cfrac{\large\textsf{12}}{\large\textsf{6}}$}

\qquad\tt{:}\longrightarrow\boxed{\large\textsf\textcolor{red}{x = 2}}

\large\textsf{                                                               }

\qquad\boxed{\large\textsf\textcolor{orange}{∴ The number formed = 26 }}

\large\textsf{                                                               }

Similar questions