please explain me.how to solve it (i) (xa/xb)1/ab (xb/xc)1/bc (xc/xa)1/ca = 1
L.H.S. = (xa/xb)1/ab (xb/xc)1/bc (xc/xa)1/ca
= (x a-b)1/b (xb-c)1/bc (xc-a)1/ca
= x a-b/ab xb-c/bc x c-a/ca
{(xa)b = xab}
= x a-b/ab + b-c/bc +c-a/ca
= x (ac – bc + ab – ac + bc – ab)/abc
= x0 = 1 = R.H.S (∵XO = 1)
Attachments:
Answers
Answered by
3
Step-by-step explanation:
Given: (xa/xb)^1/ab( xb /xc)^1/bc(xc/xa)1/ca
We need to prove the gives equation is unity that si 1
LHS=(xa/xb)^1/ab( xb /xc)^1/bc(xc/xa)1/ca
Using laws of exponents
= (xa/xb)1/ab( xb /xc)1/bc(xc/xa)1/ca
= x(a-b)/ab * x^(b-c)/bc * x^(c-a)/ca
= x[(a-b)/ab + (b-c)/bc + (c-a)/ca]
= x[c(a-b)/abc + a(b-c)/abc + b(c-a)/abc ]
= x { [c(a-b)+ a(b-c) + b(c-a) ]/abc }
= x ( ac – bc + ab – ac + bc – ab ] /abc
= x 0/abc
= x0
= 1
= RHS
Hence proved
Was this answer helpful?
4 (31)
(23)
(1)
Similar questions
Math,
9 days ago
Psychology,
9 days ago
Social Sciences,
9 days ago
English,
18 days ago
English,
18 days ago
Math,
8 months ago
Science,
8 months ago