Math, asked by dhwani2053, 1 year ago

please explain me this ​

Attachments:

Answers

Answered by Anonymous
12

\mathfrak{\large{\underline{\underline{Solution:-}}}}

 \displaystyle \frac{3(y - 5)}{4} - 4y = 3 -  \frac{(y - 3)}{2}

 \displaystyle  \frac{3(y - 5)}{4} - 4y +  \frac{(y - 3)}{2}  = 3

 \displaystyle  \frac{3(y - 5)}{4} - \frac{4y}{1} +  \frac{(y - 3)}{2}  = 3

Least Common Multiple of 2 and 4 is 4

 \displaystyle  \frac{3(y - 5)}{4} - \frac{4y(4)}{1(4)} +  \frac{(y - 3)(2)}{2(2)}  = 3

 \displaystyle  \frac{3y - 15}{4} - \frac{16y}{4} +  \frac{(2y - 6)}{4}  = 3

 \displaystyle  \frac{3y - 15  -  16y + 2y - 6}{4}= 3

 \displaystyle 3y - 15  -  16y + 2y - 6= 3 \times 4

 \displaystyle 3y - 15  -  16y + 2y - 6= 12

 \displaystyle 5y - 21 - 16y = 12

 \displaystyle -21 - 11y = 12

 \displaystyle - 11y = 12 + 21

 \displaystyle - 11y = 33

 \displaystyle - 11y = 33

 \displaystyle 11y = 33

 \displaystyle y = \frac{33}{-11}

 y = - 3

\Huge{\boxed{ \sf y = -3}}

\mathfrak{\large{\underline{\underline{Verification:-}}}}

 \displaystyle \frac{3(-3 - 5)}{4} - 4(-3) = 3 -  \frac{(-3 - 3)}{2}

 \displaystyle \frac{3(-8)}{4} + 12 = 3 -  \frac{(-6)}{2}

 \displaystyle \frac{-24}{4} + 12 = 3 - (-3)

 - 6 + 12 = 3 - (-3)

 - 6 + 12 = 3 + 3

6 = 6

Answered by Anonymous
59

Answer:-

Refer the attachment

Attachments:
Similar questions