Math, asked by krishnaakshit75, 10 months ago

Please explain properly.
Best answer will be marked brainliest.

Attachments:

Answers

Answered by nitin009988
0

Step-by-step explanation:

hope it helps you to solve your problem

Attachments:
Answered by BrainlyConqueror0901
1

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Base=20\:cm}}}

\green{\tt{\therefore{Altitude=12\:cm}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies Altitude \: of \: triangle =  \frac{3}{5} th \: of \: corresponding \: base \\  \\  \red{\underline \bold{To \: Find:}} \\  \tt:  \implies Base  = ? \\  \\ \tt:  \implies Altitude = ?

• According to given question :

 \tt \circ \: Let \: Base  \: be \: x \\  \\  \tt \circ \: Altitude \:  =  \frac{3}{5}x \\  \\  \bold{As \: we \: know \: that} \\  \tt:  \implies Area \: of \: triangle =  \frac{1}{2}  \times b \times h \\  \\ \tt:  \implies Area \: of \: triangle =  \frac{1}{2}  \times x \times  \frac{3}{5} x \\  \\ \tt:  \implies Area \: of \: triangle =  \frac{3}{10}  {x}^{2}  \\  \\  \bold{As \: per \: given \: relation} \\  \tt \circ \: Base  = x + 10 \\  \\ \tt \circ \: Altitude =  \frac{3}{5} x - 4 \\  \\  \tt:  \implies Area \: of \: triangle =  \frac{1}{2}  \times (x + 10 ) \times  (\frac{3}{5} x  - 4) \\  \\ \tt:  \implies  \frac{3}{10} {x}^{2}   =  \frac{1}{2}  \times (x + 10) \times ( \frac{3}{5} x - 4) \\  \\ \tt:  \implies  \frac{3}{5}  {x}^{2}  =   \frac{3}{5}{x}^{2}  - 4x + 6x - 40 \\  \\ \tt:  \implies  \frac{3}{5}  {x}^{2}  -  \frac{3}{5 }  {x}^{2}  = 2x - 40 \\  \\ \tt:  \implies 2x = 40 \\  \\ \tt:  \implies x =  \frac{40}{2}  \\  \\  \green{\tt:  \implies x = 20 \: cm} \\  \\   \green{\tt \therefore Base  \: is \: 20 \: cm} \\  \\ \green{\tt \therefore Altitude  \: is \: 12 \: cm}

Similar questions