please explain
Answers
Answered by
18
Hey !!!
a + b + c = 3π/2 = 270°
a + b = 270° - c _______1)
From given :
=> cos2a + cos2b+ cos2c
=> we know a formula
cosc + cosd = 2cos(c + d)/2 × cos ( c -d)/2
using this formula
2cos ( 2a + 2b)/2 ×cos ( 2c + 2d)/2 + cos2c
↘we know cos2C = 1 - 2sin²C
or, 2cos (a + b) cos (a - b) + 1 - 2sin²c
or, 2cos (270° - c) cos ( a - b) + 1 - 2sin²c
[cos ( 270 - c ) = sinc ] from 1st
or, -2sinc cos ( a - b)+ 1 - 2sin²c
or, - 2sinc cos ( a - b) - 2sin²c + 1
or, - 2sinc { cos (a - b) + sinc} + 1
from 1st sinc = -cos ( a + b)
or, - 2sinc { cos ( a + b) - cos ( a - b) } + 1
now ,
we know that , .
cosc - cosd = 2sin(c+d)/2*sin(c-d) using here
or, -2sinc { 2sin (a + b + a - b)/2 ) ×sin(a + b - a + b)/2 + 1
or, 1 - 2sinc ( 2sina sinb)
or, 1 - 4sinc sina sinb
or, 1 - 4sina sinb sinc Answer ✔prooved ♻
______________________
Hope it helps you !!!
@Rajukumar111
a + b + c = 3π/2 = 270°
a + b = 270° - c _______1)
From given :
=> cos2a + cos2b+ cos2c
=> we know a formula
cosc + cosd = 2cos(c + d)/2 × cos ( c -d)/2
using this formula
2cos ( 2a + 2b)/2 ×cos ( 2c + 2d)/2 + cos2c
↘we know cos2C = 1 - 2sin²C
or, 2cos (a + b) cos (a - b) + 1 - 2sin²c
or, 2cos (270° - c) cos ( a - b) + 1 - 2sin²c
[cos ( 270 - c ) = sinc ] from 1st
or, -2sinc cos ( a - b)+ 1 - 2sin²c
or, - 2sinc cos ( a - b) - 2sin²c + 1
or, - 2sinc { cos (a - b) + sinc} + 1
from 1st sinc = -cos ( a + b)
or, - 2sinc { cos ( a + b) - cos ( a - b) } + 1
now ,
we know that , .
cosc - cosd = 2sin(c+d)/2*sin(c-d) using here
or, -2sinc { 2sin (a + b + a - b)/2 ) ×sin(a + b - a + b)/2 + 1
or, 1 - 2sinc ( 2sina sinb)
or, 1 - 4sinc sina sinb
or, 1 - 4sina sinb sinc Answer ✔prooved ♻
______________________
Hope it helps you !!!
@Rajukumar111
AanchalBarnwal:
hmmm
Answered by
1
Answer:
hope u got the answer with proper solution
Attachments:
Similar questions