Math, asked by nandita58, 11 months ago

please explain the answer correctly correctly correctly.........................

Attachments:

Answers

Answered by mondalhirak8483
2

Answer:

Hope you will understand, once you see the solution.

Attachments:
Answered by anu24239
5

\huge\mathfrak\red{Answer}

a( \tan \alpha  +  \cot \alpha ) = 1 \\  \\ a( \tan \alpha  +  \frac{1}{ \tan \alpha } ) = 1 \\  \\ a( \frac{ {tan}^{2} \alpha  + 1 }{ \tan \alpha  } ) = 1 \\  \\ a( \frac{ {sec}^{2}  \alpha }{ \tan \alpha  } ) = 1 \\  \\ a(  \frac{ {sec}^{2}  \alpha . \cos \alpha  }{ \sin \alpha }  ) = 1 \\  \\ a( \frac{ \sec \alpha  }{ \sin \alpha } ) = 1 \\  \\ a( \frac{1}{ \sin \alpha . \cos \alpha  } ) = 1 \\  \\  \\ a =  \sin \alpha  \cos \alpha  \\  \\ 2a = 2 \sin \alpha . \cos \alpha......(1) \\  \\ b =  \sin \alpha  +  \cos \alpha  \\  \\  {b}^{2}  =  {(sin \alpha  +  \cos \alpha ) }^{2}  \\  \\  {b}^{2}  =  {sin}^{2}  \alpha  +  {cos}^{2}  \alpha  + 2 \sin \alpha  \cos \alpha  \\  \\  {b}^{2}  = 1 + 2 \sin \alpha  \cos \alpha  \\  \\  {b}^{2}  - 1 = 2 \sin \alpha  \cos \alpha ....(2) \\  \\ from \: (1) \: and \: (2) \: we \: get \\  \\ 2a =  {b}^{2}  - 1

Similar questions