Math, asked by kavitagairola88, 8 months ago

Please explain the given question class VIII​

Attachments:

Answers

Answered by Anonymous
7

Answer:

\sf{\dfrac{9p^{9} + 2q^{4} r^{3}}{4p^{3} q^{4} r^{4}}}

Step-by-step explanation:

\sf{\bigg(\dfrac{3p^{2} qr^{-2}}{2p^{-1} q^{3}} \bigg)^{2} + (2p^{3} r)^{-1}}

\sf{\dfrac{18p^{9} q^{2} r + 4q^{6} r^{4}}{8p^{3} q^{6} r^{4}}}

\sf{\dfrac{18p^{9} + 4q^{4} r^{3}}{8p^{3} q^{4} r^{4}}}

\sf{\dfrac{9p^{9} + 2q^{4} r^{3}}{4p^{3} q^{4} r^{4}}}

Therefore, this is the required answer.

Answered by BrainlyConqueror0901
40

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{\bigg( \frac{3 {p}^{2} q {r}^{ - 2} }{2  {p}^{ - 1}  {q}^{3} }  \bigg)^{2}  + (2 {p}^{3} r) ^{ - 1} = \frac{9 {p}^{9} + 2 {r}^{3}  {q}^{4}  }{4 {p}^{3} {q}^{4}  {r}^{4}  }}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies  \bigg( \frac{3 {p}^{2} q {r}^{ - 2} }{2  {p}^{ - 1}  {q}^{3} }  \bigg)^{2}  + (2 {p}^{3} r) ^{ - 1}  \\  \\ \red{\underline \bold{To \: Find :}} \\   \tt:  \implies  \bigg( \frac{3 {p}^{2} q {r}^{ - 2} }{2  {p}^{ - 1}  {q}^{3} }  \bigg)^{2}  + (2 {p}^{3} r) ^{ - 1} = ?

• According to given question :

 \bold{As \: we \: know \: that} \\ \tt:  \implies  \bigg( \frac{3 {p}^{2} q {r}^{ - 2} }{2  {p}^{ - 1}  {q}^{3} }  \bigg)^{2}  + (2 {p}^{3} r) ^{ - 1} \\  \\ \tt:  \implies   \bigg(\frac{3 {p}^{2 + 1} }{ 2{r}^{2} {q}^{2}  }  \bigg)^{2}  +  \frac{1}{2 {p}^{3} r}  \\  \\ \tt:  \implies   \bigg(\frac{3 {p}^{3} }{2 {r}^{2} {q}^{2}  }  \bigg)^{2}  +  \frac{1}{2 {p}^{3}r }  \\  \\ \tt:  \implies  \frac{9 {p}^{6} }{4 {r}^{4 } {q}^{4}  }  +  \frac{1}{2 {p}^{3}r }  \\  \\ \tt:  \implies \frac{9 {p}^{6}  \times 2 { p}^{3}r + 4 {r}^{4} {q}^{4}   }{4 {r}^{4}  {q}^{4}  \times 2 {p}^{3}r }

 \tt:  \implies  \frac{18 {p}^{9} r + 4 {r}^{4} {q}^{4}  }{8 {p}^{3}  {q}^{4}  {r}^{5}  }  \\  \\ \tt:  \implies \frac{2r(9 {p}^{9}  + 2 {r}^{3} {q}^{4}  )}{2r(4 {p}^{3}  {q}^{4} {r}^{4} ) }  \\  \\ \green{ \tt:  \implies  \bigg( \frac{3 {p}^{2} q {r}^{ - 2} }{2  {p}^{ - 1}  {q}^{3} }  \bigg)^{2}  + (2 {p}^{3} r) ^{ - 1} = \frac{9 {p}^{9} + 2 {r}^{3}  {q}^{4}  }{4 {p}^{3} {q}^{4}  {r}^{4}  }}

Similar questions