Math, asked by 31stodc, 11 months ago

Please explain with proper written steps

Attachments:

Answers

Answered by tahseen619
3

9

Step-by-step explanation:

Given:

 \sqrt{x + 16}  -  \sqrt{x}  = 2

To find:

The value of x

Solution:

\sqrt{x + 16}  -  \sqrt{x}  = 2 \\  \\  \sqrt{x + 16}  - 2 =  \sqrt{x}  \\  \\ \text{[Squaring both side]} \\  \\  {( \sqrt{x + 16} - 2) }^{2} =  {( \sqrt{x}) }^{2}   \\  \\  {( \sqrt{x + 16}) }^{2}  +  {(2)}^{2} - 2.2. \sqrt{x + 16} =  x  \\  \\ x + 16 + 4 - 4 \sqrt{x+16} = x \\  \\\cancel{x} + 20 - 4 \sqrt{x+ 16}=\cancel{x}\\\\ 20 = 4 \sqrt{x+16} \\ \\\cancel{20} =  \cancel{4}  \sqrt{x  +  16} \\  \\ 5 =  \sqrt{x + 16}  \\   \\ \text{[Squaring both side]}  \\  \\ {(5)}^{2}  =  {( \sqrt{x + 16}) }^{2}  \\  \\ 25 = x + 16 \\  \\  25 - 16 = x\\ \\ x = 9

Therefore, The required value of x is 9.

Important Formula

 {x}^{2}+{y}^{2}+2xy={(x + y)}^{2}\\\\{x}^{2}+{y}^{2}-2xy={(x - y)}^{2}\\\\(x + y)(x - y)={x}^{2}-{y}^{2}\\\\

Similar questions