please explain your answer properly
Attachments:
Answers
Answered by
1
Given, f(x) when divided by x^2 – 2x + k leaves (x + a) as remainder.
x^2 - 2x + k)x^4 - 6x^3 + 16x^2 - 25x + 10( x^2 - 4x + (8-k)
x^4 - 2x^3 + kx^2
----------------------------------------
-4x^3 + (16-k)x^2 - 25x
-4x^3 + 8x^2 - 4kx
----------------------------------------
(8-k)x^2 + (4k-25)x + 10
(8-k)x^2 - 2(8-k)x + k(8-k)
--------------------------------------------------
(4k-25+16-2k)x + (10-k(8-k))
Given, (4k – 25 + 16 – 2k)x + (10 – k(8 – k) ) = x + a
(2k – 9)x + ( 10 – 8k + k2 ) = x + a
2k - 9 = 1
k = 5. --------------------------- (1)
Also 10 – 8k + k^2 = a
10 – 8(5) + 5^2 = a(from (i)
a = -5.
k + a = 5 - 5
= 0.
Hope this helps!
x^2 - 2x + k)x^4 - 6x^3 + 16x^2 - 25x + 10( x^2 - 4x + (8-k)
x^4 - 2x^3 + kx^2
----------------------------------------
-4x^3 + (16-k)x^2 - 25x
-4x^3 + 8x^2 - 4kx
----------------------------------------
(8-k)x^2 + (4k-25)x + 10
(8-k)x^2 - 2(8-k)x + k(8-k)
--------------------------------------------------
(4k-25+16-2k)x + (10-k(8-k))
Given, (4k – 25 + 16 – 2k)x + (10 – k(8 – k) ) = x + a
(2k – 9)x + ( 10 – 8k + k2 ) = x + a
2k - 9 = 1
k = 5. --------------------------- (1)
Also 10 – 8k + k^2 = a
10 – 8(5) + 5^2 = a(from (i)
a = -5.
k + a = 5 - 5
= 0.
Hope this helps!
Similar questions