Math, asked by seemantinimeher7356, 8 months ago

please explaine it ?.............​

Attachments:

Answers

Answered by sarthakferrari
1

hii buddy here is answer .

at last I used ex angle property .

Attachments:
Answered by Ridvisha
26

{  \dagger{\red{ \bold{  \:  \:  \: given}}}}



⛦ AC ⊥ BD



Then,


∠ACB = ∠ ACD = 90°






{ \dagger{ \red{ \bold{ \:  \:  \: to \: find}}}}



∠ AED = ???





{ \dagger{ \red{ \bold{  \:  \:  \: solution}}}}





In Δ ABC ,



☞ ∠ BAC = x


☞ ∠ ABC = ( 4x - 10° )


☞ ∠ ACB = 90°




{ \sf{using \:  \: { \underline{  \green{angle \: sum \: property \: of \: triangle}}}}}




{ \boxed{ \boxed{ \blue{ \sf{sum \: of \: all \: 3 \: angles = 180}}}}}



∠ ACB + ∠ ABC + ∠ BAC = 180°




➜ 90° + ( 4x - 10° ) + x = 180°



➜ 90° - 10° + 4x + x = 180°



➜ 80° + 5x = 180°



➜ 5x = 180° - 80°




➜ 5x = 100°



➜ x = 20°





In Δ CDE,



☞ ∠ ACD = ∠ ECD = 90°



☞ ∠ CDE = ( 3x - 6 ) = ( 3*20 - 6 )°

= 60° - 6° = 54°





{ \sf{ using \:  \: { \underline{ \green{exterior \: angle \: property \: of \: triangle}}}}}



An exterior angle of a triangle is equal to the sum of the opposite interior angles.



∠ ECD + ∠ CDE = ∠ AED



➜ 90° + 54° = 6y


➜ 6y = 144°


➜ y = 24°



thus,



⛦ ∠ AED = 6y = 144°
Similar questions