Math, asked by mehekkumarigmailcom, 7 months ago

Please factorise, no spam boys
27p {}^{3}  -  \frac{1}{216}  -  \frac{9}{2} p {}^{2}  +  \frac{1}{4} p

Answers

Answered by Anonymous
5

Answer:

27p {}^{3}  -  \frac{1}{216}  -  \frac{9}{2}  {p}^{2}  +  \frac{1}{4} p \\  \\  = (3p) {}^{3}  + ( -  \frac{1}{6} ) {}^{3}  -  \frac{3}{2} p(3p -  \frac{1}{6} )   \\  \\  =  (3p) {}^{3}  + ( -  \frac{1}{6} ) {}^{3}  + 3 \times (3p)( -  \frac{1}{6} )(3p + ( -  \frac{1}{6} )) {}^{3}  \\  \\  = (3p + ( -  \frac{1}{6} )) {}^{3}  \\  \\  = (3p -  \frac{1}{6} ) {}^{3}   \\  \\  = (3p -  \frac{1}{6} )(3p -  \frac{1}{6} )(3p -  \frac{1}{6} )

Some useful identities:

→ (a + b)^2 = a^2 + 2ab + b^2

→ (a – b)^2 = a^2 – 2ab + b^2

→ a^2 – b^2 = (a + b) (a – b)

→ (a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca

→ (a + b – c)^2 = a^2 + b^2 + c^2 + 2ab – 2bc – 2ca

→ (a – b – c)^2 = a^2 + b^2 + c^2 – 2ab + 2bc – 2ca

→ (a + b)^3 = a^3 + b^3 + 3ab(a + b)

→ (a – b)^3 = a^3 – b^3 – 3ab(a – b)

→ (a^3 + b^3) = (a + b) (a^2 – ab + b^2)

→ (a^3 – b^3) = (a – b) (a^2 + ab + b^2)

Answered by Unacademy
2

\sf{\red{\boxed{\bold{Solution}}}}

⠀⠀⠀⠀

\sf:\implies\:{\bold{ 27p^3 + \dfrac{1}{216^3} + \dfrac{9}{2}p^2 + \dfrac{1}{4}p}}

⠀⠀⠀⠀

\sf:\implies\:{\bold{ (3p)^3 + \bigg(\dfrac{1}{6}\bigg)^3 + \dfrac{9}{2}p^2 + \dfrac{1}{4}p}}

⠀⠀⠀⠀

\sf:\implies\:{\bold{ (3p)^3 + \bigg(\dfrac{1}{6}\bigg)^3 + \dfrac{3}{2}p(3p-\dfrac{1}{6})}}

⠀⠀

\sf:\implies\:{\bold{ (3p)^3 + \bigg(\dfrac{1}{6}\bigg)^3 + 3\times 3p\times \dfrac{1}{6}(3p-\dfrac{1}{6})}}

⠀⠀

  • From identity

\sf{\red{\boxed{\bold{a^3 + b^3 + 3ab(a+b) = ( a + b)^3}}}}

⠀⠀⠀⠀

\sf:\implies\:{\bold{ ( 3p + \dfrac{1}{6})^3 }}

⠀⠀

Similar questions