Math, asked by mariammorsi75, 8 months ago

Please factorise the below questions and show full working X*+2x/x*-3x X*-3x/x*-2x-3 Pic is below if u don’t understand

Attachments:

Answers

Answered by Anonymous
3

Question:- 1)

 \bf \frac{ {x}^{2}  + 2x}{ {x}^{2} - 3x }

solution:-

Now take x as a common

  \bf \: \frac{x(x + 2)}{x(x - 3)}

X is cancel we out, we get

 \bf \frac{x + 2}{x - 3}

  \bf \: \green{answer =  \frac{x + 2}{x - 3} }

Question:- 2)

 \bf \:  \frac{ {x}^{2} - 3x }{ {x}^{2} - 2x - 3 }

solution:-

Factories the denominator , we get

 \bf \:  \frac{x(x - 3)}{ {x}^{2}  - 3x  + x - 3}

 \bf \:  \frac{x( {x}  - 3)}{x(x - 3) + 1(x - 3)}

\bf \:   \frac{x( {x}  - 3)}{(x + 1)(x - 3)}

Now x - 3 is cancel out we get

 \bf \:  \frac{x}{x + 1}

 \bf \red{answer \:  =  \:  \frac{x}{x + 1} }

Question:- 3)

 \bf \:  \frac{ {x}^{2}  + 4x}{2 {x}^{2}  - 10x}

solution:-

Take a common

 \bf \:  \frac{x(x + 4)}{2x(x - 5)}

X is cancel out

 \bf \:  \frac{x + 4}{2(x - 5)}

 \bf \:   \orange{answer =  \frac{x + 4}{2(x - 5)} }

Answered by Anonymous
3

 \bf \huge \green{answer}

1)Answer:-

 \bf \red{ \implies \:   \frac{ {x}^{2} + 2x }{ {x}^{2}  - 3x} }

\bf \red{ \implies \:  \frac{x(x + 2)}{x(x - 3)} }

\bf \red{ \implies \:  \frac{x + 2}{x - 3}}

2)Answer:-

\bf  \pink{ \implies \:  \frac{ {x}^{2} - 3x }{ {x}^{2} - 2x - 3} }

factories the denominator

\bf  \pink{ \implies \frac{x(x - 3)}{ {x}^{2} + 2x - 3x - 3} }

\bf  \pink{ \implies \frac{x(x - 3)}{(x + 1)(x - 3)}}

\bf  \pink{ \implies \frac{x}{x + 1}}

3)Answer:-

\bf  \purple{ \implies \:   \frac{ {x}^{2} + 4x }{ {2x}^{2}  - 10x}}

\bf  \purple{ \implies\frac{x(x + 4)}{2x(x - 5)}}

\bf  \purple{ \implies \:  \frac{x + 4}{2(x - 5)}}

Similar questions