Math, asked by rawatanshika45127, 8 months ago

please fast Answer ✌️✌️​

Attachments:

Answers

Answered by BrainlyPopularman
38

GIVEN :

Differential equation  \bf (x - y) \dfrac{dy}{dx}  = x + 2y

TO FIND :

• General solution = ?

SOLUTION :

 \\\implies \bf (x - y) \dfrac{dy}{dx}  = x + 2y \\

 \\\implies \bf \dfrac{dy}{dx}  = \dfrac{ x + 2y}{x - y} \\

• It's an zero order Homogeneous Differential equation.

 \\\bf { \huge{.}} \:  \: Now \:\:put \:  \: { \underline{ \bf \: y = vx }}  :  - \\

• Differentiate with respect to 'x' –

 \\\bf  \implies\:  \dfrac{dy}{dx} = v + x \dfrac{dv}{dx} \\

• So that –

 \\\implies \bf v + x \dfrac{dv}{dx}  = \dfrac{ x + 2(vx)}{x -vx} \\

 \\\implies \bf v + x \dfrac{dv}{dx}  = \dfrac{ x(1+2v)}{x(1-v)} \\

 \\\implies \bf v + x \dfrac{dv}{dx}  = \dfrac{1+2v}{1-v} \\

 \\\implies \bf x \dfrac{dv}{dx}  = \dfrac{1+2v}{1-v} - v \\

 \\\implies \bf x \dfrac{dv}{dx}  = \dfrac{1+2v - v(1 - v)}{1-v}\\

 \\\implies \bf x \dfrac{dv}{dx}  = \dfrac{1+2v - v +  {v}^{2} }{1-v}\\

 \\\implies \bf x \dfrac{dv}{dx}  = \dfrac{{v}^{2} + v + 1 }{1-v}\\

 \\\implies \bf  \dfrac{1 - v}{ {v}^{2} + v + 1} dv  = \dfrac{dx}{x}\\

• Now Apply integration on both sides –

 \\\implies \bf  \int \dfrac{dv}{ {v}^{2} + v + 1}  -  \int \dfrac{v.dv}{ {v}^{2} + v + 1} = \int \dfrac{dx}{x}\\

• We should write this as –

 \\\implies \bf  \int \dfrac{dv}{ {v}^{2} + v + 1}  - \dfrac{1}{2} \int \dfrac{(2v+1)-(1).dv}{ {v}^{2} + v + 1} = \int \dfrac{dx}{x}\\

 \\\implies \bf  \int \dfrac{dv}{ {v}^{2} + v + 1}  - \dfrac{1}{2} \int \dfrac{(2v+1).dv}{ {v}^{2} + v + 1} + \dfrac{1}{2} \int \dfrac{dv}{ {v}^{2} + v + 1} = \int \dfrac{dx}{x}\\

 \\\implies \bf \dfrac{3}{2} \int \dfrac{dv}{ {v}^{2} + v + 1}  - \dfrac{1}{2} \int \dfrac{(2v+1).dv}{ {v}^{2} + v + 1} = \int \dfrac{dx}{x}\\

 \\\implies \bf  I_{1} -I_{2}=  log(x) + c \:\:\:\: ----eq.(1)\\

• Here –

 \\ \implies \bf \: I_{1}= \dfrac{3}{2} \int \dfrac{dv}{ {v}^{2} + v + 1} \\

• We should write this as –

 \\ \implies \bf \: I_{1}=  \dfrac{3}{2}\int \dfrac{dv}{ {v}^{2} + v + \frac{1}{4}  +  \frac{3}{4} } \\

 \\ \implies \bf \: I_{1}=  \dfrac{3}{2}\int \dfrac{dv}{ { \bigg(v +  \dfrac{1}{2} \bigg)}^{2} + \bigg(\dfrac{ \sqrt{3} }{2} \bigg)^{2}}\\

• We know that –

 \\ \implies \bf \: \int \dfrac{dx}{{x}^{2} + a^{2}} =  \dfrac{1}{a} { \tan}^{ - 1} \bigg( \dfrac{x}{a} \bigg) + c\\

• So that –

 \\ \implies \bf \: I_{1}= \dfrac{3}{2}\frac{1}{\bigg(\dfrac{ \sqrt{3} }{2} \bigg)}  { \tan}^{ - 1}\bigg( \dfrac{v +  \frac{1}{2}}{\frac{ \sqrt{3} }{2}} \bigg)\\

 \\ \implies \bf \: I_{1}= \dfrac{3}{2} \times \dfrac{2}{ \sqrt{3} }  { \tan}^{ - 1}\bigg( \dfrac{2v +1}{\sqrt{3}} \bigg)\\

 \\ \implies \bf \: I_{1}=  \sqrt{3} \: { \tan}^{ - 1}\bigg( \dfrac{2v +1}{\sqrt{3}} \bigg)\\

• And –

 \\ \implies \bf \: I_{2}= \dfrac{1}{2}\int \dfrac{(2v + 1)dv}{ {v}^{2} + v + 1} \\

• Put v² + v + 1 = t :–

• Differentiate with respect to 't' –

 \\ \implies \bf \:(2v + 1) \dfrac{dv}{dt} =1 \\

 \\ \implies \bf \:(2v + 1) dv=dt\\

• So that –

 \\ \implies \bf \: I_{2}= \dfrac{1}{2}\int \dfrac{dt}{t} \\

 \\ \implies \bf \: I_{2}= \dfrac{1}{2} log(t)  \\

 \\ \implies \bf \: I_{2}= \dfrac{1}{2} log({v}^{2} + v + 1)  \\

• Now put the values in eq.(1) –

 \\\implies \bf  \sqrt{3} \: { \tan}^{ - 1}\bigg( \dfrac{2v +1}{\sqrt{3}} \bigg)-\dfrac{1}{2}log({v}^{2} + v + 1)=  log(x) + c \\

• Now replace 'v' –

 \\\implies \bf \sqrt{3} \: { \tan}^{ - 1}\left( \dfrac{\dfrac{2y}{x} +1}{\sqrt{3}} \right)-\dfrac{1}{2}log\bigg({\bigg(\dfrac{y}{x}\bigg)}^{2} +\dfrac{y}{x} + 1\bigg)= log(x) + c \\

 \\\implies \large {\boxed{\bf  \sqrt{3} \: { \tan}^{ - 1}\bigg( \dfrac{2y+x}{\sqrt{3}x} \bigg)-\dfrac{1}{2}log\bigg(\dfrac{y^2 + xy + x^2 }{x^2}\bigg)=  log(x) + c}} \\


mddilshad11ab: Awesome:-)
BrainlyPopularman: Thank you
Anonymous: Amazing answer
BrainlyPopularman: Thank you ♥️
Answered by vinshultyagi
45

\Huge\rm\red{SEE\: Attachment}

Attachments:
Similar questions