Math, asked by rawatanshika45127, 9 months ago

☞ please fast Answer bcz it's urgent..


Attachments:

Answers

Answered by BrainlyPopularman
30

Question :

  \\\bf \to Integrate :\int ({\sin}^{3}x) ({ \cos}^{2} x).dx \\

ANSWER :

GIVEN :

• A function –

  \\\bf \implies  I = \int ({\sin}^{3}x) ({ \cos}^{2} x).dx \\

TO FIND :

• I = ?

SOLUTION :

  \\\bf \implies  I = \int ({\sin}^{3}x) ({ \cos}^{2} x).dx \\

 \\\bf \implies  I = \int ( \sin x)({\sin}^{2}x) ({ \cos}^{2} x).dx \\

• Using identity –

 \\\bf \bigstar \:\:{\sin^{2} }(x) + { \cos} ^{2}  (x) = 1 \\

• So that –

 \\\bf \implies  I = \int ( \sin x)(1 - {\cos}^{2}x) ({ \cos}^{2} x).dx \\

• Now put cos x = t

 \\\bf \implies  \cos(x)  = t \\

• Differentiate with respect to 't' –

 \\\bf \implies  - \sin(x) \frac{dx}{dt} =1 \\

 \\\bf \implies  - \sin(x) dx=dt \\

 \\\bf \implies  \sin(x) dx=-dt \\

• Now –

 \\\bf \implies  I =  - \int(1 - {t}^{2}) ({t}^{2} ).dt \\

 \\\bf \implies  I =  \int({t}^{2} - 1) ({t}^{2} ).dt \\

 \\\bf \implies  I =  \int({t}^{4} -  {t}^{2} ).dt \\

• Using identity –

 \\\bf \implies \int{x}^{n}.dx =  \dfrac{ {x}^{n + 1} }{n + 1}  \\

 \\\bf \implies  I =  \dfrac{ {t}^{5} }{5} -  \dfrac{ {t}^{3} }{3} + c\\

• Now replace 't' –

 \\\bf \implies  I =  \dfrac{{ \cos}^{5}(x) }{5} -  \dfrac{ { \cos}^{3}(x) }{3} + c\\

Answered by Anonymous
0

CRM

HOPE IT HELPS TO U AND

PLEASE CHECK YR ANSWER CAREFULLY

PLEASE MARK ME AS BRAINLIST

Attachments:
Similar questions