Math, asked by rawatanshika45127, 9 months ago

☞please fast Answer bcz it's urgent...✌️✌️✌️​

Attachments:

Answers

Answered by BrainlyPopularman
36

QUESTION :

• If  \bf \overrightarrow{a} \: , \: \overrightarrow{b} \:  \: and \:  \: \overrightarrow{c} be three vectors such that  \bf \overrightarrow{a} \: +   \: \overrightarrow{b} \:+\: \overrightarrow{c} = 0 and  \bf  | \overrightarrow{a} | = 3 \:,  \:  | \overrightarrow{b} | = 5 \: ,  \: | \overrightarrow{c} | = 7 , find the angel between  \bf \overrightarrow{a} \: \: and \: \: \overrightarrow{b}.

ANSWER :

GIVEN :

  \\ \bf \:  \:  {\huge{.}}  \:  \:  \: \overrightarrow{a} \: +   \: \overrightarrow{b} \:+\: \overrightarrow{c} = 0 \\

  \\ \bf \:  \:  {\huge{.}}  \:  \:  \: | \overrightarrow{a} | = 3 \:,  \:  | \overrightarrow{b} | = 5 \: ,  \: | \overrightarrow{c} | = 7\\

TO FIND :

• Angle between  \bf \overrightarrow{a} \: \: and \: \: \overrightarrow{b} = ?

SOLUTION :

  \\ \bf \implies \overrightarrow{a} \: +   \: \overrightarrow{b} \:+\: \overrightarrow{c} = 0 \\

• We should write this as –

  \\ \bf \implies \overrightarrow{a} \: +   \: \overrightarrow{b} \: =  - \: \overrightarrow{c}  \\

• Now square on both sides –

  \\ \bf \implies( \overrightarrow{a} \: +   \: \overrightarrow{b})^{2}  \: = ( - \: \overrightarrow{c})^{2}   \\

  \\ \bf \implies | \overrightarrow{a} |^{2}+ |\overrightarrow{b}|^{2} + 2(\overrightarrow{a}.\overrightarrow{b})=  | \overrightarrow{c}|^{2}   \\

• Using identity –

  \\  \large \implies{ \boxed{ \bf \overrightarrow{a}.\overrightarrow{b} = | \overrightarrow{a} | | \overrightarrow{b}  | \cos( \theta)}}  \\

  \\ \bf \implies | \overrightarrow{a} |^{2}+ |\overrightarrow{b}|^{2} + 2| \overrightarrow{a} | | \overrightarrow{b}  | \cos( \theta)=  |  \overrightarrow{c}|^{2} \\

• Now put the values –

  \\ \bf \implies (3)^{2}+(5)^{2} + 2(3)(5)\cos( \theta)=(7)^{2} \\

  \\ \bf \implies 9+25+30\cos( \theta)=49\\

  \\ \bf \implies 34+30\cos( \theta)=49\\

  \\ \bf \implies 30\cos( \theta)=49 - 34\\

  \\ \bf \implies 30\cos( \theta)=15\\

  \\ \bf \implies \cos( \theta)= \cancel \dfrac{15}{30}\\

  \\ \bf \implies \cos( \theta)=\dfrac{1}{2}\\

  \\ \bf \implies \cos( \theta)= \cos( {60}^{ \circ} ) \\

  \\ \large\implies{ \boxed{ \bf \theta={60}^{ \circ}}}\\

▪︎ Hence, Angle between  \bf \overrightarrow{a} \: \: and \: \: \overrightarrow{b} is 60° .

Answered by Anonymous
1

CRM

PLEASE CHECK YR ANSWER CAREFULLY

HOPE IT HELPS TO U

PLEASE MARK ME AS BRAINLIST

Attachments:
Similar questions