Math, asked by rawatanshika45127, 8 months ago

☞ please fast Answer bcz it's urgent...✌️✌️​

Attachments:

Answers

Answered by BrainlyPopularman
22

GIVEN :

  \\ \to \bf \: x \dfrac{dy}{dx}  + y = x \cos(x)  +  \sin(x) \\

• And –

 \\ \to \bf \: y = 1 \:  \: when \:  \: x =  \dfrac{\pi}{2} \\

TO FIND :

• Solution of Differential equation = ?

SOLUTION :

  \\ \implies\bf \: x \dfrac{dy}{dx}  + y = x \cos(x)  +  \sin(x) \\

  \\ \implies\bf \: \dfrac{dy}{dx}  + \dfrac{y}{x} =  \cos(x)  +  \dfrac{ \sin(x)}{x} \\

• Standard equation –

  \\ \implies\bf \: \dfrac{dy}{dx}  +Py =Q \\

• Now let's compare –

  \\ \implies\bf P =  \dfrac{1}{x},Q =\cos(x)+ \dfrac{ \sin(x)}{x} \\

• Calculating I.F. (Integrating factor) :–

  \\ \implies\bf I.F.  =  {e}^{ \int P.dx} \\

  \\ \implies\bf  I.F.  =  {e}^{\int  \frac{1}{x} .dx} \\

  \\ \implies\bf  I.F.  =  {e}^{ log(x) } \\

  \\ \implies\large{ \boxed{ \bf I.F.=x }}\\

Genral solution :

  \\ \implies\bf y(I.F.) = \int Q(I.F.).dx  \: + c\\

  \\ \implies\bf y(x) = \int  \left(\cos(x)+ \dfrac{ \sin(x)}{x} \right)(x).dx  \: + c\\

  \\ \implies\bf y(x) = \int  \{x\cos(x)+ \sin(x) \}.dx+ c\\

  \\ \implies\bf y(x) = \int  d(x \sin x)+ c\\

  \\ \implies\bf y(x) = x \sin x+ c\\

• According to the question –

 \\ \to \bf \: y = 1 \:  \: when \:  \: x =  \dfrac{\pi}{2} \\

• So that –

  \\ \implies\bf (1). \dfrac{\pi}{2} =  \dfrac{\pi}{2}  \sin \left( \dfrac{\pi}{2} \right)+ c\\

  \\ \implies\bf \dfrac{\pi}{2} =  \dfrac{\pi}{2}+ c\\

  \\ \implies \large{ \boxed{\bf c = 0}}\\

• Hence the equation is –

  \\ \implies\bf y(x) = x \sin x\\

  \\ \implies \large{ \boxed{\bf y= \sin(x)}}\\

Answered by Anonymous
2

CRM

PLEASE CHECK YR ANSWER CAREFULLY

HOPE IT HELPS TO U

PLEASE MARK ME AS BRAINLIST

Attachments:
Similar questions