Math, asked by girlsfriend, 30 days ago

please fast please help me ​

Attachments:

Answers

Answered by BeautifullMind
46

\huge\bold\red{Question:-}

In Fig., ray OS stand on a line POQ Ray OR and ray OT are angle bisectors of ∠POS and ∠SOQ respectively. If ∠POS = x, then find ∠ROT.

\huge\bold\green{Solution:-}

Given:-

➵ ∠POR = ∠SOR

➵ ∠QOT = ∠SOT

To Find :-

➵∠ROT = ?

Solution:-

Let ∠POR = ∠SOR = x

∠QOT = ∠SOT = y

Then,

∠POS +QOS = 180° ( angles in the straight line)

⇢ x + x + y + y = 180°

⇢ 2x + 2y = 180°

⇢ 2(x + y) = 180°

⇢ x + y = 180°/2

⇢ x + y = 90°

⇢ ∠ROT = 90°

 \fbox{∠ROT = 90°}

Attachments:
Answered by Anonymous
10

Step-by-step explanation:

 \huge \red {\boxed{ \bold{ \green{Solution : }}}}

Have Given :-

Ray OS stands on a line POQ.

and ∠POS = x

 \bold{∠POS + ∠SOQ = 180°  ( liner \:  pair )}

\bold{x + ∠SOQ = 180° \: ( \because \:∠POS = x)}

\bold{∠SOQ = 180° - x}

Ray OR bisects ∠POS,

\bold{∠ROS = \frac{1}{2}  × ∠POS}

\bold{ =  \frac{1}{2}  \times x \:  \: ( \because \: ∠POS = x )}

\bold{ =  \frac{x}{2} }

OT bisects ∠SOQ

\bold{∠SOT =  \frac{1}{2}  \times∠SOQ}

\bold{∠SOT =  \frac{(180°-x)}{2}}

\bold{∠SOT =  \frac{180°}{2}} -  \frac{x}{2}

\bold{∠SOT =  90° -  \frac{x}{2} }

Now,

Finding ∠ROT

 \bold{∠ROT =  ∠ROS + ∠SOT}

 \bold{∠ROT =  \frac{x}{2}  - 90°-  \frac{x}{2} }

 \bold{∠ROT =   \cancel{\frac{x}{2}}  - \cancel\frac{x}{2} +  90° }

 \bold{∠ROT =  90°}

I hope it is helpful

Similar questions