Math, asked by vijaylaxmi95, 9 months ago

please fast please please

Attachments:

Answers

Answered by gnaneshk2006
0

Step-by-step explanation:

hope it helps you

follow plz I follow back

Attachments:
Answered by 007Boy
2

Given :-

2 {}^{x}  = 3 {}^{y}  = 6 {}^{z}

What to prove :-

 \frac{1}{z}  =  \frac{1}{y}  +  \frac{1}{x}

Solution :-

let \: 2 {}^{x}  = 3 {}^{y}  = 6 {}^{z}  = k

Hence,

→ \:  \: 2 {}^{x}  \: = k \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  2 = k {}^{ \frac{1}{x} }  \\  \\→ 3 {}^{y }  = k \\  \:  \:  \:  \:  \:  \: 3 = k {}^{ \frac{1}{y} }  \\  \\→ 6 {}^{z}  = k \\ \:  \:  \:  \:  \:  \:  \:  \:  6 = k {}^{ \frac{1}{z} }  \\  \\ ∵ \: 6 = 3\times 2\\  \\ ∴k {}^{ \frac{1}{z} }  = k {}^{ \frac{1}{y} }  \times k {}^{ \frac{1}{x} }  \\  \\ k {}^{ \frac{1}{z} }  = k {}^{( \frac{1}{y} +  \frac{1}{x}  )} \\  \\ ∴  \frac{1}{z}  =  \frac{1}{y}  +  \frac{1}{x}  \\  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: proved

Similar questions