please fast solve my question.....✌️✌️
Answers
GIVEN :–
• are in A.P. with Common difference 'd'.
TO FIND :–
• Value of
SOLUTION :–
• Let the function –
• If terms are in A.P. then we should write this as –
• So that –
• Put in equation –
• Using identity –
Answer:
GIVEN :–
• \bf a_{1},a_{2},a_{3},......,a_{n}a1,a2,a3,......,an are in A.P. with Common difference 'd'.
TO FIND :–
• Value of
\begin{gathered}\\ \implies \bf \tan \bigg[ \tan^{ - 1} \bigg( \frac{d}{1 +a_{1}a_{2}} \bigg) + \tan^{ - 1} \bigg( \frac{d}{1 +a_{2}a_{3}} \bigg) + \tan^{ - 1} \bigg( \frac{d}{1 +a_{3}a_{4}} \bigg) + ..... +\tan^{ - 1} \bigg( \frac{d}{1 +a_{n - 1}a_{n}} \bigg)\bigg]=?\\\end{gathered}⟹tan[tan−1(1+a1a2d)+tan−1(1+a2a3d)+tan−1(1+a3a4d)+.....+tan−1(1+an−1and)]=?
SOLUTION :–
• Let the function –
\begin{gathered}\\ \implies \bf y =\tan \bigg[ \tan^{ - 1} \bigg( \frac{d}{1 +a_{1}a_{2}} \bigg) + \tan^{ - 1} \bigg( \frac{d}{1 +a_{2}a_{3}} \bigg) + \tan^{ - 1} \bigg( \frac{d}{1 +a_{3}a_{4}} \bigg) + ..... +\tan^{ - 1} \bigg( \frac{d}{1 +a_{n - 1}a_{n}} \bigg)\bigg] \\\end{gathered}⟹y=tan[tan−1(1+a1a2d)+tan−1(1+a2a3d)+tan−1(1+a3a4d)+.....+tan−1(1+an−1and)]
• If terms \bf a_{1},a_{2},a_{3},......,a_{n}a1,a2,a3,......,an are in A.P. then we should write this as –
\begin{gathered}\\ \implies\bf a_{2} = a_{1} + d\\\end{gathered}⟹a2=a1+d
\begin{gathered}\\ \implies\bf a_{3} = a_{2} + d\\\end{gathered}⟹a3=a2+d
\begin{gathered}\\ \implies\bf a_{n} = a_{n-1} + d\\\end{gathered}⟹an=an−1+d
• So that –
\begin{gathered}\\ \implies\bf d = a_{2} - a_{1} \\\end{gathered}⟹d=a2−a1
\begin{gathered}\\ \implies\bf d = a_{3} - a_{2}\\\end{gathered}⟹d=a3−a2
\begin{gathered}\\ \implies\bf d = a_{n} - a_{n-1} \\\end{gathered}⟹d=an−an−1
• Put in equation –
\begin{gathered}\\ \implies \bf y =\tan \bigg[ \tan^{ - 1} \bigg( \dfrac{a_{2} - a_{1}}{1 +a_{1}a_{2}} \bigg) + \tan^{ - 1} \bigg( \dfrac{a_{3} - a_{2}}{1 +a_{2}a_{3}} \bigg) + \tan^{ - 1} \bigg( \dfrac{a_{4} -a_{3}}{1 +a_{3}a_{4}} \bigg) + ..... +\tan^{ - 1} \bigg( \dfrac{a_{n} - a_{n-1}}{1 +a_{n - 1}a_{n}} \bigg)\bigg] \\\end{gathered}⟹y=tan[tan−1(1+a1a2a2−a1)+tan−1(1+a2a3a3−a2)+tan−1(1+a3