Math, asked by vaniviji0653, 1 month ago

please find answer for this questions please. please don't spam .spam answer will be reported.​

Attachments:

Answers

Answered by 12thpáìn
107

1) Find The Rational Number Between -1/2 and 3/4

To find rational numbers between -1/2 and 3/4.

 \sf = \left( -  \dfrac{1}{2}  +  \dfrac{3}{4} \right) \div 2

 \sf = \left( \dfrac{ - 2 + 3}{4}  \right) \div 2

\sf = \dfrac{ 1}{4}   \times   \dfrac{1}{2}

 \sf =  \dfrac{1}{4}

  • Rational numbers between -1/2 and 3/4 Is 1/4.

2) Rationalization

  • Multiply numerator and denominator by a radical that will get rid of the radical in the denominator.

 \sf \: i) \dfrac{1}{ \sqrt{18}  -  \sqrt{32} }

\sf \:  \: =   \dfrac{1}{ \sqrt{18}  -  \sqrt{32} }  \times  \dfrac{ \sqrt{18} +  \sqrt{32}  }{ \sqrt{18} +  \sqrt{32}  }

\sf \:  \: =   \dfrac{ \sqrt{18} +  \sqrt{32}  }{ (\sqrt{18})^{2}  +  (\sqrt{32}) ^{2}  }

\sf \:  \: =   \dfrac{ \sqrt{18} +  \sqrt{32}  }{{18} +  {32}  }

\sf \:  \: =   \dfrac{ \sqrt{18} +  \sqrt{32}  }{50  }

 \sf \: ii) \dfrac{2 \sqrt{2} }{ \sqrt{5}  +  \sqrt{7} }

 \sf \:  = \dfrac{2 \sqrt{2} }{ \sqrt{5}  +  \sqrt{7} }  \times  \dfrac{ \sqrt{5 } -  \sqrt{7}  }{ \sqrt{5}  -  \sqrt{7} }

 \sf \:  =  \dfrac{2 \sqrt{2}(  \sqrt{5 } -  \sqrt{7}  )}{( \sqrt{5}) { }^{2}   - ( \sqrt{7} ) {}^{2} }

 \sf \:  =  \dfrac{2 \sqrt{2}(  \sqrt{5 } -  \sqrt{7}  )}{5 - 7 }

\sf \:  =  \dfrac{2 \sqrt{10} -  2\sqrt{14}  }{ - 2}

\sf \:  =  \dfrac{ - 2( \sqrt{10} -  \sqrt{14} ) }{  2}

\sf \:  =  \dfrac{ \sqrt{14} -  \sqrt{10}  }{  2}

3 Find The value Of x

 \Rightarrow\sf 2  ^{x}  = (128)^{ \frac{1}{7} } \times ( \sqrt{2}  )^{4}

 \Rightarrow\sf 2  ^{x}  = (2^{7} )^{ \frac{1}{7} } \times ({2}  ^{ \frac{1}{2} }  )^{4}

\Rightarrow\sf 2  ^{x}  = (2 )^{ \frac{1}{7}  \times 7} \times (2   )^{4 \times  \dfrac{1}{2} }

\Rightarrow\sf 2  ^{x}  = (2 )^{1} \times (2   )^{2}

  • On substituting Both Side

 \sf \: x = 2 + 1

\sf \: x = 3

Similar questions