Math, asked by mahipatel1490, 1 month ago

please find the answer as fast as possible​

Attachments:

Answers

Answered by ItzBrainlyLords
1

Solution

Given :

  • CF = DE

  • CD // FE

Here,

DE and FC are Transversal on the line

  • CD

Given angle C = 104°

 \\  \large \sf \underline{ \underline{ \star \:  \: property : }} \\

Angles of different Transversals on same line are equal

 \\  \large \sf \therefore \:  \angle \: c =  \angle \: d = 104 \degree \\

Now,

  • Angle F = angle E

(as opposite lines are equal and parallel)

 \\  \large \rm \leadsto \: let \:  \angle \: a =  \angle \: b = x \\

Solving:

 \\  \large \sf \underline{ \underline{ \star \: angle \:  \: su m \:  \: property: }} \\

 \\ \large \tt \implies \angle \: a +  \angle \: b +  \angle \: c +  \angle \: d = 360 \degree \\  \\ \large \tt \implies    x + x + 104 \degree + 104 \degree = 360 \degree \\  \\  \large \tt \implies    2x +  208\degree = 360 \degree \\  \\  \large \tt \:  \implies \: 2x = 360 \degree - 208 \degree \\  \\ \large \tt \:  \implies \: 2x = 152 \degree \\  \\  \large \tt \:  \implies \: x =  \frac{152}{2}  \\  \\  \large \tt \therefore \:  \: x = 76 \degree \\

So,

Angle a = angle b = 76°

__________________________________

 \\  \large \sf \underline{ \underline{ \star \:  \: check : }} \\

 \\  \large \sf \underline{ { \: angle \:  \: su m \:  \: property: }} \\

angle a + angle b + angle c + angle d = 360°

 \\  \large \sf \implies \: 104 \degree +  104 \degree +  76 \degree +  76 \degree  =  180\degree  \\  \\  \large \sf \mapsto \:  \: 360 \degree = 360 \degree \\  \\  \large \rm \: l.h.s = r.h.s \\

Hence Proved

Similar questions