Math, asked by mahikas2007, 8 months ago

please find the answer with proper steps

Attachments:

Answers

Answered by amitnrw
0

Given : \sqrt[3]{9\sqrt[3]{27\sqrt[3]{81\sqrt[3]{243}}} } =\sqrt[x]{3^{x+2}}

To Find : Value of x

Solution:

\sqrt[3]{9\sqrt[3]{27\sqrt[3]{81\sqrt[3]{243}}} } =\sqrt[x]{3^{x+2}}

∛243 = ∛3⁵  =  3^{\frac{5}{3}}

∛81.3^{\frac{5}{3}}=∛3⁴.3^{\frac{5}{3}}=∛3^{\frac{17}{3}}=3^{\frac{17}{9}}

∛27.3^{\frac{17}{9}}=∛3³.3^{\frac{17}{9}}=∛3^{\frac{44}{9}}=3^{\frac{44}{27}}

∛9.3^{\frac{44}{27}}=∛3².3^{\frac{44}{27}}=∛3^{\frac{98}{27}}=3^{\frac{98}{81}}

98/81 = (x + 2)/x

=> 98x = 81x + 162

=> 17x = 162

=> x = 162/17

If

\sqrt[3]{9\sqrt[3]{27\sqrt[3]{81\sqrt[3]{243}}} } =\sqrt[3]{3^{x+2}}

Taking cube on both sides

=>  {9\sqrt[3]{27\sqrt[3]{81\sqrt[3]{243}}} }=3^{x+2}

=> 9\sqrt[3]{27\sqrt[3]{81\sqrt[3]{243}}} =3^x.3^2

=> 9\sqrt[3]{27\sqrt[3]{81\sqrt[3]{243}}} =3^x.9

=> \sqrt[3]{27\sqrt[3]{81\sqrt[3]{243}}} =3^x

Taking cube on both sides

=> 27\sqrt[3]{81\sqrt[3]{243}}  =3^{3x}

=> 3^3\sqrt[3]{81\sqrt[3]{243}}  =3^{3x}

Taking cube on both sides

=> 3^9 \cdot 81\sqrt[3]{243}  =3^{9x}

=> 3^9 \cdot 3^4\sqrt[3]{243}  =3^{9x}

=> 3^{13}  \sqrt[3]{243}  =3^{9x}

Taking cube on both sides

=> 3^{39} \cdot  243   =3^{27x}

=> 3^{39} \cdot  3^5   =3^{27x}

=> 3^{44}  =3^{27x}

=> 27x = 44

=> x = 44/27

Learn more:

Cube root of (x+1)(y+2)(z+3)=7 Find xyz.

https://brainly.in/question/13081153

(y-3)^2=9, then cube root of the maximum value of (3x+4y)

https://brainly.in/question/11524870

Similar questions