Math, asked by pallavilingwal6, 1 month ago

please find the answers please fast​

Attachments:

Answers

Answered by VεnusVεronίcα
35

Appropriate question :

  \dfrac{ \sqrt{11} -  \sqrt{7}  }{ \sqrt{11}  +  \sqrt{7} }  = a - b \sqrt{77}

\\

Solution :

Rationalising the denominator of \bf\dfrac{\sqrt{11}-\sqrt{7}}{\sqrt{11}+\sqrt{7}}:

 \green{ :  \implies \dfrac{ \sqrt{11}  -  \sqrt{7} }{ \sqrt{11}   + \sqrt{7} }  \times  \bigg( \dfrac{ \sqrt{11}   -   \sqrt{7} }{ \sqrt{11}  -   \sqrt{7}}  \bigg )}

 \green{  : \implies \dfrac{ (\sqrt{11 }  -  \sqrt{7} )( \sqrt{11}  -   \sqrt{7}  )}{( \sqrt{11}  +  \sqrt{7} )( \sqrt{11}   -   \sqrt{7})  } }

Using the identity : \bf (a-b)(a+b)=a^2-b^2 and \bf (a-b)^2=a^2+b^2-2ab :

  \orange{: \implies \dfrac{ {( \sqrt{11}) }^{2}  +   {( \sqrt{7} )}^{2}   - 2( \sqrt{11} )( \sqrt{7} )}{ {( \sqrt{11}) }^{2} -  {( \sqrt{7}) }^{2}  } }

  \orange{:  \implies \dfrac{11  + 7 - 2 \sqrt{77} }{11 - 7} }

 \pink{  : \implies \dfrac{18 - 2 \sqrt{77} }{4} }

  \pink{:  \implies \dfrac{2(9 -  \sqrt{77} )}{2(2)} }

  \blue{: \implies \dfrac{ \cancel2(9 -  \sqrt{77}) }{ \cancel2(2)} }

 \blue{:  \implies \dfrac{9 -  \sqrt{77} }{2} }

When comparing this with RHS :

 \red{\bigstar} \:  \:  \bf a =  \dfrac{9}{2} \\  \red{\bigstar} \:  \: \bf b =  \dfrac{1}{2}

\\

Similar questions