Science, asked by MiraculousBabe, 2 months ago

Please find the derivative of \displaystyle \frac{e^{\frac{3}{x}}}{x^2} ​.
Show all work necessary - thanks!​

Answers

Answered by lhema739
1

Answer:

These are called second partial derivatives, and the notation is analogous to the d 2 f d x 2 \ dfrac{d^2 f}{dx^2} dx2d2fstart fraction

Answered by SrijanShrivastava
1

f(x) =  \frac{ {e}^{ \frac{3}{x} } }{ {x}^{2} }

f  ^\prime(x) = \frac{d}{dx} (  \frac{ {e}^{ \frac{3}{x} } }{ {x}^{2} } )

Using the Quotient Rule of Differentiation

 =  \frac{ {x}^{2}  \frac{d}{dx}( {e }^{ \frac{3}{x} }) -  {e}^{ \frac{3}{x} }    \frac{d}{dx}( {x}^{2})  }{ {x}^{4} }

Using The Chain Rule of Differentiation

 =  \frac{ {x}^{2}  {e}^{ \frac{3}{x} } \frac{d}{dx}  ( \frac{3}{x} ) -  {e}^{ \frac{3}{x} }(2x) }{ {x}^{4} }

 =  \frac{  - {x}^{2} {e}^{ \frac{3}{x} } \frac{3}{ {x}^{2} }   -2x  {e}^{ \frac{3}{x} }  }{ {x}^{4} }

 =  - ( \frac{3 {e}^{ \frac{3}{x} }  + 2x {e}^{ \frac{3}{x} }  }{ {x}^{4} } )

\boxed{f  ^\prime(x) =  -  {e}^{ \frac{3}{x} } ( \frac{3 + 2x}{ {x}^{4} } )}

Similar questions