Please find the derivative of . Show all of your work and explain as much as possible.
Answers
On differentiating both sides w. r. t. x, we get
Additional Information :-
Answer:
Lety=x3
2x
2
−1
On differentiating both sides w. r. t. x, we get
\rm :\longmapsto\:\dfrac{d}{dx}y = \dfrac{d}{dx}\bigg(x \: {3}^{ {2x}^{2} - 1} \bigg):⟼
dx
d
y=
dx
d
(x3
2x
2
−1
)
\rm :\longmapsto\:\dfrac{dy}{dx} = x\dfrac{d}{dx} {3}^{ {2x}^{2} - 1} + {3}^{ {2x}^{2} - 1} \dfrac{d}{dx}x:⟼
dx
dy
=x
dx
d
3
2x
2
−1
+3
2x
2
−1
dx
d
x
\rm :\longmapsto\:\dfrac{dy}{dx} = x{3}^{ {2x}^{2} - 1}log3\dfrac{d}{dx}( {2x}^{2} - 1) + {3}^{ {2x}^{2} - 1} \times 1:⟼
dx
dy
=x3
2x
2
−1
log3
dx
d
(2x
2
−1)+3
2x
2
−1
×1
\rm :\longmapsto\:\dfrac{dy}{dx} = x{3}^{ {2x}^{2} - 1}log3(4x) + {3}^{ {2x}^{2} - 1}:⟼
dx
dy
=x3
2x
2
−1
log3(4x)+3
2x
2
−1
\rm :\longmapsto\:\dfrac{dy}{dx} = {3}^{ {2x}^{2} - 1}(4 {x}^{2} log3+ 1):⟼
dx
dy
=3
2x
2
−1
(4x
2
log3+1)
Additional Information :-
\boxed{ \bf \: \dfrac{d}{dx} x = 1}
dx
d
x=1
\boxed{ \bf \: \dfrac{d}{dx} sinx = cosx}
dx
d
sinx=cosx
\boxed{ \bf \: \dfrac{d}{dx} cosx = - \: sinx}
dx
d
cosx=−sinx
\boxed{ \bf \: \dfrac{d}{dx} tanx = {sec}^{2} x}
dx
d
tanx=sec
2
x
\boxed{ \bf \: \dfrac{d}{dx} secxtanx = t anx}
dx
d
secxtanx=tanx
\boxed{ \bf \: \dfrac{d}{dx} cotx = - {cosec}^{2} x}
dx
d
cotx=−cosec
2
x
\boxed{ \bf \: \dfrac{d}{dx} cosecx = - cotx \: cosecx}
dx
d
cosecx=−cotxcosecx
\boxed{ \bf \: \dfrac{d}{dx} {e}^{x} = {e}^{x} }
dx
d
e
x
=e
x
\boxed{ \bf \: \dfrac{d}{dx} \dfrac{u}{v} = \dfrac{v\dfrac{d}{dx} u - u\dfrac{d}{dx}v }{ {v}^{2} }}
dx
d
v
u
=
v
2
v
dx
d
u−u
dx
d
v